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A method of analyzing National Air Space (NAS) air traffic that uses the Discrete
Fourier Transform (DFT) is presented. The DFT is used to transform time domain
traffic count data into the frequency domain where the sources of traffic in air spaces
can be identified and characterized more easily. It is shown in simulation that individual
traffic flows within Air Route Traffic Control Centers can be distinguished by their
periodicity in the DFT plot. Next, three Traffic Management Initiatives (playbook
rerouting, metered flows, and Ground Delay Programs) are implemented in simulations
and their signature effects on the traffic are identified using the DFT. Finally, historical
flight data is studied and the DFT is applied to sector traffic count data. It is found that
in many cases, variations in traffic due to rerouting and convective weather disturbances
are better highlighted in the frequency domain than in the original time domain data.
Initial results of the DFT show it has potential as a tool for measuring and/or predicting
NAS behavior for daily tactical planning and control purposes.

I. Introduction

T
raditional methods of characterizing air traffic in the National Air Space (NAS) have relied on mea-
surements such as number of operations, flight counts, delay (total, average, and peak), airspace demand,

etc. These data are useful for understanding and analyzing the performance of the national air transporta-
tion system, and are the basis for the majority of the work in the air traffic management field. Several
methods of modeling, predicting, and optimizing the performance of the NAS using these metrics have been
proposed. For example, Sridhar et al.1 construct a linear time-varying model of aggregate traffic flow using
flight counts as the state variable. An autoregressive model for predicting sector demand is presented by
Chen and Sridhar in Ref. 2 that uses historical data and takes convective weather conditions into account.
There has been less work in applying frequency analysis techniques to air traffic data, though related spectral
analysis techniques that operate on the stochastic properties of the traffic have been successfully used to
model and predict both air and automotive traffic. In Ref. 3, for example, a spectral analysis on airport
performance is conducted based on histograms of arrival rates. The authors found that the approach was
useful for graphically distinguishing the operational differences between airports. In Ref. 4, a spectral analy-
sis technique of using historical traffic flow covariance matrix modal functions is used to forecast automotive
traffic. Results were found to be comparable to other prediction techniques based on time series models.

In this paper, the authors have begun to investigate the use of the Discrete Fourier Transform (DFT)
on airspace traffic count data. The DFT is used to characterize various NAS airspace regions, and to detect
disturbances in the those regions that are not as apparent in the time domain. Nominal traffic in several
Air Route Traffic Control Centers (ARTCCs) is characterized by applying the DFT to simulated traffic
data. Simulations of various delay-causing Traffic Management Initiatives (TMIs) such as playbook routes,
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metering, and Ground Delay Programs are also studied in the frequency domain using the DFT. Finally, the
DFT is used to search for those TMI frequency domain signatures in the historical data.

This paper is organized as follows: In Section II the mathematical background to the DFT is presented,
and its method of application is described. The results of the analysis are shown in Section III, which is
divided into three parts. The first part presents a characterization of some ARTCCs using the DFT on
simulated data. The second part demonstrates the use of the DFT for characterizing three TMIs, and the
third part shows the results of applying the DFT to historical flight data. Conclusions and future work are
presented in Section IV.

II. Background

A. The Discrete Fourier Transform

This section begins with a brief overview of the Fourier transform, which transforms a signal from the time
domain into the frequency domain. It is based on the idea that a signal in time can be decomposed into a
sum of sines and cosines over an infinite range of frequencies. The resulting plot of the Fourier transform
is the amplitude of the sinusoids at those frequencies. As an example, consider the signal shown in Fig. 1a,
which is made up of 3 sinusoids of different frequency and amplitude. If a sample of this signal is long
enough to be assumed infinite, the plot of the Fourier transform yields 3 distinct spikes shown in Fig. 1b at
10, 100, and 250 Hz with amplitudes 4, 2, and 3 respectively. Thus, the signal has been transformed into
the frequency domain and no information has been lost. In fact, given the signal of Fig. 1b, the time series
signal can be reconstructed using what is known as the Fourier transform synthesis equation.
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(b) Frequency domain

Figure 1: Signal x(t) = 4 sin(2π(10t)) + 2 sin(2π(100t)) + 3 sin(2π(250t)) in time and frequency domains.

The original Fourier transform was developed and prescribed for continuous time signals. Since traffic
data, like most time series data in the modern world, are sampled at discrete intervals, a version of the
Fourier transform known as the Discrete Fourier Transform (DFT) is used. A sequence of N time series data
samples, x[0], x[1], ..., x[N − 1] can be represented as

x[n] =
1

N

N−1∑

k=0

X [k] · ei2πkn/N , (1)

where the complex X [k] terms are the Fourier series coefficients. Equation (1) is known as the DFT synthesis
equation, or the inverse DFT equation. One way to interpret this result is that any N -length discrete sampled
time series can be thought of as the sum of N/2+1 sines and cosines at N/2+1 discrete frequencies ranging
from 0 to Fs/2, where Fs is the sampling frequency. The amplitudes of the sines and cosines are given by
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the X [k] terms, which come from the DFT analysis equation:

X [k] =

N−1∑

n=0

x[n] · e−i2πkn/N . (2)

As with the continuous time Fourier transform, once the signal has been transformed into the frequency
domain, (using Eq. (2)), it can be completely reconstructed using Eq. (1) despite the DFT having only a
finite N/2 + 1 number of frequency points. In practice, the Fast Fourier Transform is used to efficiently
calculate equation (2), and in this paper MATLAB’s ‘fft’ function5 is used to generate the results. Fourier
transforms (specifically the DFT) show up in countless applications in science and engineering. Much has
been written about their theory and application. See Refs. 6 and 7 for more details.

B. Window Functions

Implicit in the mathematics of the DFT is the assumption that the time series signal x[n] is infinite and
periodic—that is, the signal repeats itself from negative infinity to positive infinity. This has to be the case
because sines and cosines are defined as extending from negative to positive infinity, thus x[n] in (1) is not
finite. Furthermore, x[n] must be periodic since an infinite number of sinusoids are required to synthesize
an aperiodic signal, and the DFT uses only a finite number of frequencies.

Since real-world signals are not infinite, and most are not periodic, the DFT is calculated with the
assumption that values of x[n] for n < 0 and n > N − 1 are all zero. This process is known as windowing
because it is analogous to filtering out all samples of an imaginary infinite and periodic signal except for those
in 0 ≤ n ≤ N − 1. When calculating the DFT of a finite aperiodic signal using the Fast Fourier Transform
(FFT) algorithm, this simple type of window function, known as a rectangular window, is implicitly applied.
Unfortunately, for reasons beyond the scope of this paper, windowing a signal produces artificial anomalies
in the DFT plot. There are alternative methods of windowing, however, that trade off some negative
characteristics of those anomalies. The proper choice of a windowing function is critical and varies depending
on application.

In order to determine the appropriate windowing function for this type of data, a single air traffic
simulation was generated that contained a known frequency signature in an Air Route Traffic Control Center
(ARTCC, or Center). (This specific simulation will be referenced later in the paper with more details.) Using
one day’s recorded center counts from this simulation, and applying four popular windowing functions to
the data prior to computing the DFT, produces the results shown in Fig. 2. Here, and in the remainder of
this paper, DFT amplitude is plotted against period instead of frequency because it is more intuitive in this
application. Recall that period T is simply the inverse of frequency f , and since the count data is sampled
at 1-minute intervals, the resulting period is in minutes.

The simulation run in Fig. 2 is known to have periodic content at approximately 13.4 minutes, and all
four plots indicate this. The smaller spikes to the left of 13.4 minutes are the harmonics of this fundamental
periodic content. Periodic signals often produce a spike at their fundamental frequency ff along with smaller
spikes at multiples of that frequency 2ff , 3ff , etc. (In terms of fundamental period, these spikes are shown
at Tf/2, Tf/3, etc.) While the rectangular window results shown in Fig. 2a preserves the DFT amplitude
the best, it also contains a lot of artificial noise—especially near the fundamental frequency spike at 13.4
minutes. Using this window, it might be difficult to notice important periodic events in the DFT plots.
The Blackman-Nuttall window shown in Fig. 2d smooths out the most noise of all four windows, but it
also severely reduces the amplitude of the fundamental frequency. The Hanning and Hamming windows
shown in Figs. 2b and 2c are very similar in their formulations and results. Throughout the remainder of
this paper, the Hamming windowing function will be used to condition the time series count data prior to
calculating the DFT. This window function is one of the most commonly used windows in signal processing,
and strikes an acceptable balance between noise reduction and amplitude attenuation for this research. For
more information on window functions, see Refs. 6, 7, and 8.
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(d) Blackman-Nuttall Window

Figure 2: A comparison of four window functions applied to the same simulated traffic count data. DFT
amplitude versus period.

III. Results

The results of this analysis are divided into three parts. In the first subsection, the DFT is applied to
selected centers in an effort to characterize their nominal traffic. In the second subsection, various traffic
management initiatives (TMIs) are applied in simulation in order to identify their DFT signature. Finally, in
the third subsection historical data are analyzed from the DFT perspective in an attempt to identify events
in the NAS that would otherwise be overlooked from the raw time series data.

A. DFT for Characterizing Center Traffic

The DFT can be calculated for any element in the NAS that can produce a time series of air traffic counts.
Examples of such time series include center or sector counts versus time, and airport departures versus
time. This work begins by selecting 30 weekdays of traffic from 2012 with the lowest amount of NAS-
wide delay in minutes. Using this data set, simulations of nominal traffic are run using the Future ATM
Concepts Evaluation Tool (FACET).9 Herein, nominal traffic indicates that only the filed flight plan is used
to simulate the behavior of each flight. This is as opposed to simulations where additional controller actions
have been simulated, or historical flight data, which is updated according to actual radar-track-recorded
aircraft positions.

In Fig. 3a, the air traffic counts in Cleveland Center (ZOB) for each of the 30 days are plotted for 24
hours, sampled in 1-minute intervals. The blue line shows the mean of these counts. Treating each of the
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30 days of count data as a time series signal, the DFT is computed (after the Hamming window of Fig. 2c
is applied) and the results are shown in Fig. 3b. Again, the mean of these DFT results are shown in blue.
Fig. 3b shows that, as expected, the dominant periodic content of the counts data occurs at 1440 minutes.
This is the 24-hour cyclical behavior of traffic, and the DFT of any daily traffic data signal would exhibit
this characteristic.
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(b) DFT of center counts

Figure 3: Simulated nominal traffic Cleveland Center counts and DFT for 30 selected days. Mean counts
and DFT shown in blue.

More interesting information may be found by looking at the higher frequency (periodicity of less than
240 minutes) events that exist closer to the origin of Fig. 3b. For the remainder of this paper, the DFT
plots will focus on this higher frequency range because it is expected that disruptions in traffic flow will be
exhibited here. Also, while the periodic 24-hour cyclical nature of traffic is known, traffic events of lower
periodicity are not as well understood or cataloged.

Of the 30 days represented in Fig. 3, the center count data of December 6, 2012 is closest to the mean
counts (that is, the sum of the absolute error from the mean counts is the least), and thus the most similar to
a “typical” low-delay delay. In Fig. 4 the center counts and DFT plots are shown for this date in black. Note
that there is a spike at approximately 110 minutes in the DFT plot (Fig. 4b), indicating that a significant
event exists in the data with that periodicity. Suspecting that this might be caused by flights originating
from and heading towards Detroit Metropolitan Wayne County Airport (DTW), one of the major airports
supplying traffic to Cleveland Center, these flights were subtracted from the center counts, and the DFT
was recomputed. The remaining center counts and DFT results are plotted in blue in Figs. 4a and 4b. The
DTW flight counts and DFT results are shown in maroon. It is clear from Fig. 4b that the spike at 110
minutes is primarily due to the DTW flights.
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Figure 4: Simulated nominal traffic Cleveland Center counts and DFT for December 6, 2012.
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Figure 5: DFT of Denver Center counts for May 14,
2012.

These results are compelling because they
demonstrate the potential value of the DFT for flight
count data analysis. Without any prior knowledge
of what distinguishes the blue time series line in
Fig. 4a from the solid black line, all that can be
easily surmised is that the flight volume has been
reduced. However, if it is known that flights to and
from DTW airport in Cleveland Center have a signa-
ture periodicity of approximately 110 minutes, this
volume reduction could be identified as being caused
by a disruption in DTW airport operations by view-
ing the data in the frequency domain. A reduction in
the DFT plot at approximately 110 minutes would
suggest the reduction in center-wide traffic volume
as a reduction in DTW flights.

Generally, air traffic count data in a center (or
sector) is the result of several other contributing en-
tities of the NAS (e.g. specific airports, neighboring
air space, specific jet routes, etc.). If those entities
exhibit a periodic signature, an operational disruption in them would be hidden in the time series data, but
made more obvious in the DFT plot (frequency domain). This is clearly demonstrated in the Cleveland
center DFT plot, and several other centers exhibit similar characteristics. For example, most of the spikes
in the DFT of Denver Center (ZDV) counts can be attributed to flights to and from Denver International
Airport (DEN). This is shown in Fig. 5 where the DFT of only DEN flights in Denver Center for May 14,
2012 (shown in maroon) shadows the DFT plot of total Denver Center counts. May 14 exhibited traffic most
similar to the mean traffic in this center.

Unfortunately, it is not always clear how to explain the DFT plot in its entirety for all centers. This
is partially due to the limited time series sample size in addition to the noise introduced by windowing
as discussed above. It is suspected, however, that there are reliable explanations for the source of large
spikes that appear in this range in center count DFT plots. Further analysis and interaction with subject
matter experts may be needed to identify them. For example, in Fig. 6 when a similar analysis is done with
Atalanta Center (ZTL) and Atlanta International Airport (ATL) for January 4, 2012, the major DFT spikes
of the total center data (in black) cannot be attributed to ATL traffic (in maroon) despite ATL being a
major source of traffic in that center. Again, the traffic of January 4 was most similar to the mean traffic in
Atlanta Center.
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B. Catalog of Initiatives
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Figure 6: DFT of Atlanta Center counts for January
4, 2012.

In times of convective weather, or traffic congestion
of any sort, traffic management initiatives (TMIs)
are implemented to reroute, meter, or delay aircraft.
In this subsection, examples of some TMIs are im-
plemented in simulation to observe and catalog their
effects in the frequency domain via the DFT.

1. Playbook Rerouting

One of the common TMIs used by controllers
to reroute traffic around convective weather is
known as the severe weather avoidance playbook
CAN 1 East. This involves rerouting east-bound
flights heading toward the northeast airports (e.g.,
New York Metropolitan, Washington, Philadelphia,
and Boston area) north into Minneapolis Center
(ZMP) and over the Great Lakes region. The first
high altitude sector in ZMP to be affected by the
increase in traffic is ZMP20. Thus, choosing the
high volume date of July 6, 2012, and implementing
the CAN 1 East playbook in simulation in FACET
from 16:00 - 24:00 UTC, the traffic counts and DFT results for that sector are compared against the baseline
nominal traffic data in Fig. 7. As expected, Fig. 7a shows that traffic volume increases substantially with
the additional playbook rerouted aircraft. In the frequency domain, this additional stream of aircraft is
identified by an increases in the amplitude of the DFT plot between 30 and 50 minutes of period. Though
it is not yet understood why this playbook route increases the periodicity of the sector counts within this
range, other sectors through which this playbook stream traverses exhibit similar behavior.
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Figure 7: Sector ZMP20 counts and DFT for July 6, 2012, 16:00 - 24:00 UTC.

2. Miles in Trail Metering

If the CAN 1 East playbook-affected stream of aircraft is metered at the the Rapid City waypoint (RAP),
which is upstream of ZMP center, the metered playbook stream of traffic can be detected in the DFT plot. In
Fig. 8b it is shown that without any metering, the traffic in ZMP11 shows an increase in amplitude between
35 and 55 minutes of period (similar to ZMP20). As the miles-in-trail (MIT) of separation is increased on
this stream, the DFT plot approaches that of the baseline DFT curve. This is because as the playbook
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traffic stream is spread out in distance, the traffic density of the stream is reduced, and thus the increase in
single sector counts due to this stream is lessened. In other words, the traffic looks more like the original
baseline traffic—both in the time and frequency domains. The curve for 50 MIT does, however show a telltale
spike at approximately 6.7 minutes. This corresponds to the distance in time between flights traveling at
approximately 450 knots. (The spike at 3.35 minutes for the 25 MIT simulation is harder to detect within
the noise.) In fact, the plots shown in Fig. 2 were generated from the DFT of total ZMP20 sector counts
with 100 MIT applied to the CAN 1 East flow, producing a spike at approximately 13.4 minutes.
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Figure 8: Sector ZMP11 Counts and DFT for July 6, 2012, 16:00 - 24:00 UTC.

3. Ground Delay Programs

Spikes in the center count DFT plots can often be attributed to traffic associated with a major airport in the
center. With this in mind, simulations were carried out to determine if Ground Delay Programs (GDPs),
which involve delaying flights on the ground at their origins to limit the arrival rate at an airport, could
be detected using the DFT. Four simulations were carried out involving Denver Center (ZDV) and Denver
International Airport (DEN) using traffic data from May 14, 2012. The nominal arrival rate for DEN is 120
aircraft per hour. Denver Center counts are recorded from 12:00 - 20:00 UTC when DEN is at the nominal
arrival rate, and then for 3 additional simulations where this rate has been significantly reduced. Figure 9
shows both the time series and DFT results for these simulations. Note that because the time series data
is shorter (8 hours instead of 24) the nominal DFT plot takes a different shape than it does in Fig. 5. This
is because the amount of data is reduced, so there is less resolution in the DFT plot. However, there is
still a significant spike shown between 90 and 180 minutes of period. The simulated GDPs are not in full
effect until 17:00 UTC, so the time series center count data of Fig. 9a is nearly identical from 12:00 - 17:00
UTC. Nevertheless, the GDP effects are contrasted nicely in Fig. 9b, with the DEN signature spike being
progressively reduced as the arrival rate at DEN is reduced.

To clarify, arrival rates (measured in flights per hour) and traffic periodicity plotted in DFT plots (mea-
sured in minutes) are not the same thing. In other words, the nominal arrival rate of 120 flights per hour
is not related to the spike in Fig. 5 being near 120 minutes. Rather, the reduction in arrivals at DEN
has reduced the signature of DEN traffic within Denver Center, which happens to exhibit a periodicity of
between 90 and 180 minutes. Also, it should be mentioned that a reduction in volume as exhibited in the
time series data of Fig. 9a does not necessarily correlate to a reduction in DFT magnitude. Recall that the
DFT is displaying the amplitude of periodic events that make up a time series signal. All things being equal,
a mere reduction in mean traffic counts would produce an identical DFT plot at all periodicities except at
the infinite-length period (0th frequency). In this work, all traffic count data has been mean-shifted prior to
calculating the DFT in order to eliminate this effect.
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Figure 9: Denver Center Counts with varying ground delay programs for Denver International Airport, May
14, 2012, 12:00 - 20:00 UTC.

C. Identifying Historical NAS Events

So far, the DFT has been effective at distinguishing characteristic traffic flows within the NAS as well as
the effects of playbook, metering, and GDP TMIs implemented in simulation. Unlike simulation results,
however, historical traffic data includes the effects of controller and airline actions as they respond to traffic
demands, weather constraints, and other tactical changes that are not represented by the original filed flight
plans used in the simulated results. Thus, it becomes more difficult to identify specific traffic flows and
TMI actions in the presence of all the other day-to-day operational variances. Nevertheless, with some
investigation, specific events in the NAS data record can be highlighted by the DFT analysis.
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Figure 10: DFT of sector counts for ZMP11 for se-
lected dates 16:00 - 24:00 UTC.

From operational record data, the CAN 1 East
playbook was implemented on July 26, 2012 at 20:15
UTC and extending into the following day. In
Fig. 10, the DFT of the historical counts in sec-
tor ZMP11 from 16:00 - 24:00 UTC are compared
to that of three other days chosen from the list of
low-delay dates surrounding July 26. This is done to
reduce the effects of seasonal traffic variance. The
CAN 1 East playbook caused an increase in ampli-
tude for the July 26 results (shown in green) at
nearly the same period as the simulated CAN 1 East
playbook results shown in Fig. 8b. It is not known
exactly what TMI events caused the nearby spikes
shown for the July 6 (blue) and August 2 (ma-
roon) results, but historic radar data shows that
there was significant convective weather in the re-
gion, and traffic in Sector 11 was disrupted. June
28 (black), by contrast, was clear of any convective
weather within the region for this time span.

On August 16, 2012, the Vulcan (VUZ) playbook, which routes flights from the west to northeastern
destinations southward through Atalanta Center (ZTL), was put into effect from 15:00 UTC into the following
day. These flights pass through sector ZTL23, and all flights destined to Newark, LaGuardia, JFK, and
Teterboro airports were metered to 35 miles-in-trail. Again, in Fig. 11 the DFT results of this date are
compared to those of three nearby days from the low-delay list of dates. As clearly highlighted by the green
line, which is lower than the other dates through most of the plot’s domain, the effect of this metered flow
through this sector is to reduce the amount of high frequency (low period) content of traffic. In the time
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domain plot of Fig. 12 the volume of counts for this day is increased as expected. Time series data for
ZMP11 on July 26 is not shown but is similar to Fig. 12, in that any trend that would identify the presence
of a playbook stream is difficult to observe.
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Figure 11: DFT of sector counts for ZTL23 for selected
dates 16:00 - 24:00 UTC.

Although the three other dates were chosen to
be low-delay days from a NAS-wide perspective, it
is obvious from Fig. 11 that something is substan-
tially different about August 7, 2012. Looking into
historic NEXRAD radar data, it was discovered that
there were severe thunderstorms throughout the re-
gion. In response to the weather, historic TMI
records for this time period show that there were sig-
nificant metering actions throughout Atlanta Cen-
ter, and traffic in Sector 23 was disrupted, resulting
in more high frequency (low period) events in the
counts data. Note that this effect cannot be easily
determined by the time domain counts data shown
in Fig. 12. The DFT is shown to highlight these dif-
ferences in traffic more effectively than the raw time
series data.
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Figure 12: Sector counts for ZTL23 for selected dates 16:00 - 24:00 UTC.

IV. Conclusions and Future Work

In this paper, a method of analyzing traffic data within the NAS airspace was developed and applied to
simulated and historical data. It was shown that a frequency domain analysis provides an alternative method
of analyzing and understanding the data. Traffic within control centers and sectors can be characterized by
their DFT plots to a level of detail that is not possible using time domain plots. It was found that applying
the DFT to simulated nominal traffic counts within a control center allowed specific sources of the traffic
to be identified by their periodic signatures. Often, when those sources are disrupted (as with a GDP, for
instance, or any other TMI) the disruption can be detected at the center-wide level in the frequency domain,
but not in the time domain. As presented here, the effects of playbook rerouting, metering, and GDPs could
all be detected using the DFT method on simulated data. Despite those TMI signatures being less obvious
and coherent in the historical DFT analysis, they could still be detected in many cases. In fact, while looking
for the signature of the Vulcan playbook in historic data, the detrimental effects of thunderstorms and the
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resulting TMI actions were noticed in the DFT results of a different day. These results would have been
difficult to detect by time series data alone. Thus, the DFT may be an effective tool for looking through
historical data and checking if certain initiatives were in place, or for detecting significant weather events
and their impacts on traffic.

It has been shown that delay-inducing events like TMIs produce frequency domain signatures within
airspace regions of the NAS, and it is hypothesized that such signatures, to the extent they can be detected
in historical data, may be useful for analyzing NAS behavior. Eventually, such methods may be used to
predict NAS behavior for daily real-time planning and control purposes by detecting traffic events more
precisely. To succeed in doing so, more work needs to be done to identify the frequency domain signatures
of specific traffic sources in centers and sectors, along with other initiatives like Airspace Flow Programs
(AFPs). Each airspace is different, and varies in its frequency domain response to specific TMI actions. Also,
because windowing and sample size play a major role in the DFT resolution and accuracy, more work needs
to be done to determine how to best apply the technique—especially with historical data where controller
actions tend to have smaller duration and flight plans are not followed as closely as they are in simulation.
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