
G O D D A R D S P A C E F L I G H T C E N T E R

Classification of Wildfires from
MODIS Data Using Neural Networks

PI: James MacKinnon
Co-Is: Troy Ames, Dan Mandl, Charles Ichoku, Luke Ellison

Interns: Jacob Manning, Baram Sosis

G O D D A R D S P A C E F L I G H T C E N T E R

Overview

• Can we build a neural network that detects wildfires?
– Attempted before in 1990’s with limited success

(They didn’t have GPUs)

• Moderate-resolution imaging spectroradiometer (MODIS) data
analyzed for this task
– MODIS Active Fire and Burned Area Products (MODFIRE)

ensures a wealth of labeled training data
– MODFIRE algorithm intractable for embedded hardware

• Project resulted in a highly accurate neural network
– Trained on ground using powerful GPUs (dual GTX 1080)
– Inferences performed on:

• Flight-like embedded hardware for CubeSat like testing
• Nvidia Tesla P4 for ground testing

2

G O D D A R D S P A C E F L I G H T C E N T E R

Motivations

• Wildfires pose danger to life and property

• Enable autonomous wildfire detection
– Low cost detection platform (CubeSats)
– Quick turnaround time for detection

• Embedded platforms lack adequate NN tools
– For Training on Ground
– For Inferencing in Space
– Training in Space?

• MODIS data provides useful stand-in for future missions

3

G O D D A R D S P A C E F L I G H T C E N T E R

MODIS Data Format

• Level 1B calibrated data products
– 36 spectral bands
– Radiance or Reflectance depending on band
– Scaled Integer format
– “Granules” – 5 minute swaths (2030x1354 pixels)

• Hierarchal Data Format (HDF) data containers
– Easily parsed with Python scripts
– Standard naming format
– Contains meta-data in addition to spectral band data

• Data located at LAADS Distributed Active Archive Center
– Local to Goddard, so data is provided over intranet!

4

G O D D A R D S P A C E F L I G H T C E N T E R

Neural Networks Primer

• Built out of many simple, highly interconnected neuron-
like units

• Use pre-labeled datasets to learn associations and
classifications in data and correctly classify new data

• Have been applied to medical diagnosis, social network
filtering, quantum chemistry, and more

5

Deep
Versus

Shallow

Images from http://neuralnetworksanddeeplearning.com

G O D D A R D S P A C E F L I G H T C E N T E R

Our Neural Network

• Initial attempt had:
– 38 inputs
– 2 hidden layers w/ 64 PEs
– ReLU activations
– Can we do better?

• Smaller network resulted in very
similar accuracy, and faster execution
– 38 inputs
– Reduced PEs in hidden layers

• 38 in first and 20 in second

• Finally, introduced meta-data as input
– Solar Azimuth, Zenith, Time of day

6

G O D D A R D S P A C E F L I G H T C E N T E R

Our Neural Network cont.

• Neural Network implemented using
Keras w/ TensorFlow backend

• Keras is a high level neural network
API, open source and written in python
– Rapid prototyping made easy
– Abstracts away complicated

TensorFlow data graphs

• TensorFlow is Google’s powerful graph
processing library
– Very fast, uses GPUs

7

G O D D A R D S P A C E F L I G H T C E N T E R

Training the Network

• GUI developed in Python to automate training set
generation, model running, and data visualization

• Tasks were many-fold
– Grab batches of fire pixels from MODFIRE products
– Use fire pixels to determine what data to retrieve and

then download it locally
– Pre process downloaded data

• Handle error codes (e.g. fill values, saturation, etc)
• Convert scaled integer products to floats
• Perform feature scaling

• Result is a training set with 1 million total examples
– 50/50 split of fires and non-fires

8

G O D D A R D S P A C E F L I G H T C E N T E R
9

Training GUI

G O D D A R D S P A C E F L I G H T C E N T E R

Validation Results

10

Accuracy: 99.59%
Precision: 99.03% (False Positives < 1% fires mistakenly
detected)
Recall: 99.05% (False Negatives < 1% or missed real fires)
Loss: 0.319% (Mean Squared Error)

Validation Results (samples not in training set) Network Architecture

A preliminary look at the NN weights after training indicate that
the MODIS 7, 21, 22, 23, 31, and 32 bands were the most
influential for detecting fires.

Note the MODIS active
fire detection algorithm
uses bands: 1, 2, 7, 21,
22, 31, and 32.

G O D D A R D S P A C E F L I G H T C E N T E R

Results Cont.

Metric Equation Result

Overall Accuracy (TP+TN)/(TP+TN+FP+FN) 99.96 %

Producer Accuracy
(Fire)

TP/(TP+FN) 97.82 %

Producer Accuracy
(Non-Fire)

TN/(FP+TN) 99.97 %

User Accuracy
(Fire)

TP/(TP+FP) 7.17 %

User Accuracy
(Non-Fire)

TN/(TN+FN) 99.99 %

TP: True Positive TN: True Negative
FP: False Positive FN: False Negative

G O D D A R D S P A C E F L I G H T C E N T E R

Analysis of Results

• The neural network essentially learned the
MODFIRE algorithm
– Important bands in MODFIRE were import

in the neural network as well

• False positive rates were relatively high
– FP rate less important than FN
– False alarms better then missing real fires
– Partially mitigated by FP bootstrapping

• FP Boostrapping is running a trained model
and taking FPs and adding them to training set
– Can lead to overfitting

12

G O D D A R D S P A C E F L I G H T C E N T E R

Results Cont. w/ FP Bootstrapping

Metric Equation Result

Overall Accuracy (TP+TN)/(TP+TN+FP+FN) 99.99 %

Producer Accuracy
(Fire)

TP/(TP+FN) 94.10 %

Producer Accuracy
(Non-Fire)

TN/(FP+TN) 99.99 %

User Accuracy
(Fire)

TP/(TP+FP) 53.02 %

User Accuracy
(Non-Fire)

TN/(TN+FN) 99.99 %

• Adding false positives back into training set drastically increased
the user fire accuracy at the cost of loss of generalization ability

G O D D A R D S P A C E F L I G H T C E N T E R

Embedded Implementation

• Aim was to target flight-like hardware
commonly found on CubeSats

• Targeted two platforms:
– CHREC Space Processor (CSP)

• ARM Cortex-A9 (dual core)
– Raspberry PI

• ARM Cortex-A53 (quad core)

• R-Pi as stand-in for upcoming next
generation space computer containing
Zynq UltraScale+ MPSOC

14

CSP

G O D D A R D S P A C E F L I G H T C E N T E R

Embedded NN Implementation

• Three pronged approach:
– Simple Cross compile of Tensorflow

• Easiest to implement
• Reuse models directly
• But very slow

– Optimized NumPy implementation
• Mimic calculations with NumPy’s

parallelization capabilities
• Still slow; hamstrung by Python’s loop

inefficiencies
– Custom C implementation

• More time consuming to implement
• 165x improvement over TensorFlow!

15

G O D D A R D S P A C E F L I G H T C E N T E R

Embedded NN Implementation

• Improvements came
from optimizing for
the ARM architecture
– NEON - SIMD Vector

instructions
– OpenMP – Matrix

Multiply scales well
across cores

– Ensuring arrays are
optimally aligned for
maximum cache hits

• Ditching the Python
interpreter was main
driver of performance

16SIMD: Single Instruction Multiple Data

Note: R-PI has 4 cores and higher clock rate
resulting in the better performance numbers

G O D D A R D S P A C E F L I G H T C E N T E R

Embedded Implementation Results

17

Note: Logarithmic scale on Y axis!

TensorFlow

Custom C impl.
NumPy

G O D D A R D S P A C E F L I G H T C E N T E R

Future Work

• Reduce false positive rate
– False positive bootstrapping is a start
– MODFIRE algorithm uses adjacent pixels

• Use more modern NN architectures
– ”Slice” granules into regions and apply convolutional NN

• Apply NN to more data sources
– Geostationary – e.g. GOES
– Low Earth Orbit – Future CubeSat constellations

• Train on raw data
– Level 1b data products not normally available onboard
– NN would “learn” pre-processing, but require deeper net

18

G O D D A R D S P A C E F L I G H T C E N T E R

Conclusions

• Designed a neural network that can detect wildfires with
a high degree of accuracy from MODIS data

• Developed a suite of tools to facilitate rapid prototyping
– Data gathering
– Training set generation
– Model running and testing

• Implemented Feed-Forward component of NN on low-
power, low-cost embedded hardware
– High performance without high cost
– Perfect for CubeSats

19

G O D D A R D S P A C E F L I G H T C E N T E R

Questions?

20

	Classification of Wildfires from MODIS Data Using Neural Networks
	Overview
	Motivations
	MODIS Data Format
	Neural Networks Primer
	Our Neural Network
	Our Neural Network cont.
	Training the Network
	Training GUI
	Validation Results
	Results Cont.
	Analysis of Results
	Results Cont. w/ FP Bootstrapping
	Embedded Implementation
	Embedded NN Implementation
	Embedded NN Implementation
	Embedded Implementation Results
	Future Work
	Conclusions
	Questions?

