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ABSTRACT: The Geostationary Operational Environmental Satellite - 16 (GOES-16) Geostationary 

Lightning Mapper (GLM) is evaluated for many months during the Post Launch Product Test (PLPT) 

phase in order to ensure that optimal products are available for both the operational forecasting and 

broader scientific research communities. The emphasis of the PLPT phase is to validate the GLM 

performance (i.e., lightning flash detection efficiency, geolocation and time-stamp accuracy) using an 

extensive network of independent ground-based, in-situ, and space-based reference lightning detection 

systems. However, another essential aspect of the PLPT phase is to obtain benchmarks of the GLM 

lightning optical amplitude, so that any long-term degradation in the nadir-staring GLM camera system 

can be realized and quantitatively assessed. This is accomplished in a straight-forward manner by 

collecting a very large sample of lightning flashes across many geographical regions in the GLM 

field-of-view so that statistically meaningful benchmarks of lightning optical amplitude (i.e., optical 

energy in units of femto-joules per flash) are obtained. The benchmarking is particularly important to 

follow-on studies that will attempt to incorporate the flash optical energy product into new derived 

products (e.g., energy-weighted lightning "jump" warning algorithms, and lightning nitrogen oxides 

production estimates).  

 

 

INTRODUCTION 

The optical emission from a lightning discharge is significantly multiple-scattered by the thundercloud 

medium and results in a diffuse cloud-top illumination that can be detected from space. High altitude 

aircraft observations have provided insight on the statistics of lightning cloud-top optical pulse amplitudes 

[Christian and Goodman 1987; Goodman et al. 1988], and detailed physical models describing the 

multiple scattering process have been discussed in the literature [e.g., Thomason and Krider 1982; Koshak 

et al. 1994].  

GOES-16 GLM pixel-level lightning event optical energy is given simply in units of Joules (J). This 

has the advantage that the energy of derived products such as the group optical energy and the flash 

optical energy are simple sums of the fundamental event optical energies (see Mach et al. [2007] for a 

detailed discussion of the definitions of events, groups, and flashes). This means, for example, that small 
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area bright illuminations could have the same total energy as dimmer large area illuminations. By contrast, 

the optical amplitude reported in the Lightning Imaging Sensor (LIS) dataset is a spectral energy density 

(in units of Jm-2sr-1nm-1) as discussed in Koshak [2010; Appendix] and is loosely referred to as a 

"radiance". Hence, a large optical amplitude in the LIS dataset characterizes the brightness of the flash, 

not the optical energy (as in the case of GLM). Therefore, the GLM dataset makes it easier to directly 

inter-compare the detected optical energies of two flashes, whereas the LIS dataset makes it easier to 

inter-compare the brightness of two flashes.  

In this writing, we examine the spatial and temporal variation of the GLM-detected lightning flash 

optical energy. This effort initiates the process of obtaining a reliable benchmark of lightning flash optical 

energies that can be used in the future to detect any long-term degradation in the GLM transient response.  

 

DATA 

The GLM Level 2 (L2) dataset, composed of optical events, groups, and flashes has been under 

intense validation using numerous ground, in-situ, and space-based lightning detection systems during the 

multi-month Post Launch Product Test (PLPT) period. The GLM L2 data achieved the beta-validation 

level on 5 July 2017, and the provisional-validation level on 19 January 2018. In this study, a 60-day 

period (January 11 - March 11, 2018) is considered. The Calibration Working Group (CWG) cited January 

11 as a good start time for relatively optimal data (i.e., ample ground-segment software fixes, satellite drift 

to East slot, and associated Instrument Navigation & Registration averaging were all completed by this 

time). 

Figure 1 provides a sample of a typical day within the 60-day analysis period. The left panel shows 

the location of GLM-detected lightning flashes. However, there are also noise sources such as high energy 

electrons that trigger the GLM charged coupled device (CCD) detector, and solar-glint artifacts (and 

 

 Fig. 1. Sample GLM flash, and noise, locations (left panel) and associated energies (in fJ) v. time (right panel).   
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associated CCD blooming) that represent false flashes. Expectations, based on analysis of Tropical 

Rainfall Measuring Mission / Lightning Imaging Sensor (TRMM/LIS) data suggest that GLM flash 

energies should only be typically one hundred to a few hundred femtoJoules (fJ) per flash, with larger 

values possible due to natural fluctuation [Koshak 2017]. The right panel plot in Figure 1 shows very large 

amplitude spikes, the largest of which are likely noise; a short data gap is also seen near 18 UTC. Progress 

has been made in reducing noise sources during the transitioning from the beta validation level to the 

provisional level, but advanced filtering methods (including a much needed "blooming filter") are still 

sought in order to eliminate more noise and to achieve the full maturity validation level. Therefore, the 

reader should keep in mind that the flash energy results presented here are still in part contaminated by 

noise not yet removed from the GLM dataset. 

 

RESULTS AND DISCUSSION 

Flash Energy Statistics 

Figure 2 shows the frequency distribution of the GLM flash optical energies (in units of fJ). A total of 

over 45 million (flashes plus noise sources) occurred. The GLM flash False Alarm Rate (FAR) mission 

requirements specification is that it be below 5% (over a 24-hr period across the GLM field-of-view), and 

the actual flash FAR performance is still under investigation within the PLPT process.  

 

 

Fig. 2.  Distribution of flash energies in the 60-day analysis period. Noise sources bias the results. 
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Geographical Distribution of Counts and Energy 

The large (45M+) flashes were also examined geographically as shown in Figure 3. Note in the left 

panel of Figure 3, which gives flash counts, that most flashes occurred over the S. American landmass (as 

expected since the 60-day analysis period is during the Northern Hemisphere winter). The grid cell 

resolution is 4o x 4o in latitude and longitude, and the overall pattern of flash counts traces out the basic 

GLM field-of-view. The right panel shows the mean flash energy within each grid cell; i.e. the sum of the 

flash energies in a grid cell divided by the flash count in the grid cell. Hence, the right panel plot in Figure 

3 represents the geographical distribution of the mean flash energy (in units of fJ/flash). 

 

Fig. 3.  Distribution of flash counts (left) and mean flash energy (right) in the 60-day analysis period. 

 

There are interesting geographical variations in the mean flash energy, and it is difficult at this stage 

to unravel, or even identify, all effects. However, where the flash count is sufficiently large, one typically 

sees larger flash energy over ocean than over land (e.g., flash energy is mostly larger over the Atlantic 

Ocean than over the S. America landmass) and this tendency agrees with the TRMM/LIS findings in 

Beirle et al. [2014]. There also appears to be an increase in flash energy near the limb of the GLM 

field-of-view. The large energy values at high latitudes over the N. American landmass helps clarify that 

there is in fact a limb effect since in this case the emission is not from oceanic lightning. The limb effect  

appears to be due to the fact that the instrument minimum detectable energy increases towards the limb 

(because of smaller pixel size, and less source throughput through the GLM narrow bandpass filter). But, 

other factors could be at play (e.g., the enhancement near the limb might in part be due to GLM detecting 

side-cloud lightning optical emissions, or bare channel emissions from below cloud-top, that are larger 

than the usual cloud-top lightning emissions). Motivation to examine the geographical variation of mean 

flash energy came from recent related analyses of TRMM/LIS observed optical energy densities (personal 

communications, D. Zhang and K. Cummins of the University of Arizona).   



 XVI International Conference on Atmospheric Electricity, 17-22 June 2018, Nara city, Nara, Japan. 

 

 5 

Diurnal Variation 

We have found the mean flash energy within each Local Time hourly bin. Performing this analysis 

over the entire 60-day period ensures that large noise events will adversely influence the overall diurnal 

pattern. To correct for this, we side-step some of the noise by just considering averaging over a selected 

3-day period that appears (from the daily map flash location plots) to have less noise. To remove 

additional noise, we apply a maximum flash energy filter; i.e., we analyze only those flashes in the 3-day 

period having flash energy  5000 fJ,  1000 fJ, or  500 fJ. The results for the selected 3-day period (Feb 

22-24, 2018) are provided in Figure 4. Note that when energy filters are applied, the results are 

qualitatively similar to the diurnal variation of the TRMM/LIS flash "radiance" data product provided in 

Chronis and Koshak [2017]. 

 

 

   Fig. 4. Sample diurnal variation of the 3-day (Feb 22-24, 2018) mean flash energy v. local time. 
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    The investigation of the diurnal variation of flash energy is a relatively new topic, and so potential 

biases in the diurnal patterns are still being examined. The Chronis and Koshak [2017; Fig. 6a] study 

concluded that the diurnal pattern is driven more by the (inverse) relationship between thundercloud flash 

rate and flash energy than by other potential biases (e.g., instrument threshold setting increases for 

brighter cloud background, and any biases associated with the sample sizes employed in the analysis). In 

addition, note that the diurnal variation over land and ocean technically differ [Chronis and Koshak 2017], 

but Figure 4 shows the diurnal variability from a combination of land and oceanic flashes.   

Bench-Marking Long-Term Daily Mean Flash Energy 

    Finally, Figure 5 provides the daily mean flash energy across the entire 60-day analysis period. This serves 

as the initial estimate for bench-marking the GLM flash energy. However, since the analysis in Koshak [2017]  

 

     Fig. 5. Daily mean flash energy for the 60-day analysis period (no flash energy filtering performed). 
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suggests, based on TRMM/LIS observations, that a typical GLM flash energy should be a hundred (or 

hundreds) of femtoJoules, it is advisable to conduct the same analysis as in Figure 5, but to apply a maximum 

energy filter (  5000 fJ) in order to at least avoid large noise spikes in the data. The result is plotted in Figure 

6. Whereas the mean (and standard deviation) from all flashes is 502.1 fJ (2947.8 fJ) for Figure 5 (i.e., see 

Figure 2), the values associated with Figure 6 are 297.7 fJ (560.1 fJ). Note that the huge standard deviation 

(2947.8 fJ, indicative of large noise sources) was reduced to 560.1 fJ from this energy filtration. We are 

reasonably confident that the energy filter removes a substantial amount of noise and relatively little (if any) 

actual lightning, so that the results in Figure 6 represent a better bench-marking than in Figure 5. However, 

these are only preliminary "quick-looks" and it is likely that the results in Figure 6 are still on the high-side due  

 

         Fig. 6. Daily mean flash energy for the 60-day analysis period (with the 5000 fJ filter applied). 
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to residual noise. Official bench-marking will be done using a longer analysis period and the best (final 

validation maturity level) reprocessed data with optimally mitigated noise sources.  

CONCLUSIONS 

This paper has provided the first detailed look at the geographical and temporal variation in GLM 

lightning flash energies across the GLM field-of-view over a 60-day (Southern Hemisphere summertime) 

period. Over 45 million sources (i.e., legitimate flashes plus noise sources) have been analyzed, and the 

frequency distribution of the source energy and associated statistics have been provided. Given that GLM 

is still on the pathway to a full maturity validation level and that noise (e.g., high energy electrons, solar 

glint/blooming) has not yet been optimally mitigated, the flash energy statistics presented here should still 

be viewed as noise-biased. For example, by removing sources having energies above 5000 fJ (a reasonable 

approach for removing much more noise than flashes) the mean source energy drops from 502.1 fJ to 

297.7 fJ. Nonetheless, it should be noted that significant progress has been made in mitigating noise 

sources in the process of transitioning from the beta validation level to the provisional validation level, 

and this progress is expected to continue.  

The geographical distributions of flash energy presented in this paper are interesting. As expected, 

flashes over the ocean appear more energetic on average than over the land, in agreeance with results from 

previous studies. However, there also appears to be an increase in mean flash energy as one approaches 

the limb within the GLM field-of-view. This appears to be due to the fact that the instrument minimum 

detectable energy increases towards the limb. However, other complicating factors also come into play, 

such as the effect of side-cloud (and/or below cloud) detection of flashes near the limb. 

Plots of the diurnal variation of mean flash energy were also provided. This is a relatively new and 

interesting topic wherein the main drivers leading to the diurnal pattern are not clearly identified and are 

not well understood, but some reasonably justified explanations have been suggested [Chronis and Koshak 

2017]. Given that the GLM diurnal variation results presented here are noise-biased, and were not 

segregated based on whether the flash occurred over land or ocean, the GLM results still look qualitatively 

similar to the basic TRMM/LIS results in Chronis and Koshak [2017].  

Finally, we provided a preliminary bench-marking of the daily mean flash energy across the 60-day 

analysis period. Of course, these noise-biased preliminary results will be replaced by official 

bench-marking results after the noise is optimally mitigated along the pathway to the full maturity 

validation level. The bench-marking process is vital for quantitatively assessing any long-term degradation 

in the GLM transient channel.     
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