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Electrical Component Technologies for Electrified Al
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Battery Requirement for Electrified Aircraft (Notionalss

30 passenger

300 miles, _ _ _ _
CTOL More system analysis required to identify

requirements

2-3 passenger
VTOL, 100
miles

2-3 4 passenger
passenger , VTOL, 60
CTOL, 200 ES

IES

4 passenger
VTOL, 100-
120 miles All Electric

e

150-170 300 400 500 600 700 800 1000 E:\(/tl
Wh/kg Wh/kg Wh/kg Wh/kg Wh/kg Whikg Whkg Whikg Whikg
\

10 - 20 20— 30
passenger passenger

50-70 passenger
800 miles

Light utility

50-70 Single aisle
passenger 737 class

300 miles > 400 miles 1000 miles

(?)

helicopter

Hybrid Electric

NASA GRC « RESEARCH AND ENGINEERING DIRECTORATE 3




Battery Chemistry Possibilities
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Energy density, watt-hours/kg

Battery Pack Cell



Limits on Useable Specific Energy

Baséd on currenit packaging éand integraﬁion technoldgies
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Notional Progression of Battery Capability at

> 500 Wh/kg,

Li —oxygen, Beyond Li chemistries

400 — 500 Wh/kg Li metal anode, sulfur cathode

300 — 400 Wh/kg Li metal anode, advanced cathode

300 — 350 Wh/kg Si anode, advanced cathode SOA — 250 Wh/kg at
cell level

5 Years 10 Years 15 Years
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Projected Advances in Battery Technologys

Rate of increase in specific energy is typically on the order of 5 — 8% per year

Specific energy loss from cell to pack is typically 50 to 60%
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Innovation required in:
« New chemistries and
materials for cells

Pack design and
Integration
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Multifunctional Structures With Energy Storage Cape

Batteries with some load bearing capability or structure with energy storage capability ???7?
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 High conductivity materials (better than Cu)
* Insulation materials with higher thermal conductivity

- Better magnetic core materials (high permeability and high
magnetic strength)

« Higher slot fill at windings

« Advanced thermal management

« Lightweight structures

 Higher speed

 New topologies based on advanced materials
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Amorphous and Nanocomposite I\/Iagnetsjfv |

Challenge: Manufacturing

Amorphous and
Nanocomposite
Magnets:
 Reductionin core
losses — higher
frequency
operation

Amorphous
nanocomposite

Amorphous

Higher rotational
speeds

Smaller and lighter
motors for the
same amount of

Increasing Efficiency
Permeability

power

Magnetic Flux Density

Magnet Strength
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Fabrication Process Development at NASA GRC foras
Amorphous Magnetic Materials -
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Advanced Permanent Magnets
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Advanced Insulation System
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« Combination of low thermal conductivity of
insulation and temperature constraints current
that can be drawn through conductors

e Thin film insulation with higher thermal

conductivity and temperature capability would
increase fill factor in slot — more conductor in
same space

« High voltage capability for insulation system

Polymer — boron
nitride nanotube
(BNNT) composite
development

T, ~
(’ . --" “

10 pm

BNNT — Electrically insulating, high thermal conductivity
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Potential for Carbon Nanotube Conductors s
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L e Design of Fully
Superconducting Motor
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= , : MgB-> superconducting
Vacoum hamber s y < CROSS SECTION OF FULLY composite wire: 216

SUPERCONDUCTING MACHINE 20pum filaments

Motor mount

Superconductor
rotor coils

Electromechanical
shield

* The state-of-the-art
superconducting motor is limited
to application of superconducting
materials in rotor coils only

» Application of superconducting
material in stator coils is limited
by high ac losses

Small diameter
superconducting filament
development to reduce
ac losses

342 filaments @
0.84 mm diam.
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Notional Timeline for Increase in Motor Po
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— Advanced magnets

Current NASA research (power
density at electromagnetic
level), 3 MW, >96 % efficiency

Various claims (100 —
200 kW)
Siemens (200 kW)

- System level, 95 %
efficiency

Current electric vehicles

_.Current industrial
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High Power Density Power Converters =
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Wide bandgap semiconductor (SiC and GaN) devices enable:

« Higher frequency operation (on the order of MHz) that reduces energy
storage requirements for passives (inductors and capacitors)

« Smaller passives — reduced volume and weight

A
Semiconductor
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« Higher temperature operation — better thermal management



Current NASA-Funded Research on High Power Density

Power Converters

Continuous Specific Efficiency :
i - i Switch .
power rating, power goal, goal. Topology material Cooling
MW kW/kg %
General Electric 1 19 99 3 level S1C/S1 Liqud
University of Illinois 0.2 19 99 7 level GaN Liqud
Boeing 1 26 09.3 S1 Cryogenic

University of lllinois — 200 kW Inverter
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Development of Amorphous Magnetic Materials for Hi

Frequency Inductors and Transformer

HIGH
FREQUENCY

Power (W)

Frequency (Hz)

Coated transformer core

Cast ribbon o _
Strain annealing
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Enablers for Increasing Power Density of Power Convert

Based on Wide Bandgap Device

« High temperature packaging technology for SiC-based devices — durability at high
temperature is key

« Higher switching frequency enabled by wide bandgap semiconductor devices (SiC and
GaN) - reducing the size of passives (inductors, transformers, and capacitors)

« Advanced magnetic materials with capability for high frequency operation

« Full use of high frequency feature of SiC devices require thin film capacitor with high
current carrying capability at high temperature

« Passives and EMI will be enabler for increasing power density

* Innovative topology enabled by advances passives and high switching frequency
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Progression of All Electric and Hybrid Electric Aircraft ;,\.'

Advances In Battery Technology:
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20 —-30
passenger
> 400 miles

50-70 passenger
800 miles

Light utility
helicopter

Single aisle

50-70
passenger
1000 miles

737 class

Hybrid Electric
CTOL
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Enabling Technologies for All Electric and Hybrid Electricyais

'High specific energy battery technologies for cell and battery pack

Advanced magnets

High-conductivity electrical conductors

Advanced capacitors

Advanced insulation system
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