The Gateway

Enabling infrastructure for a new era of lunar robotics

Terry Fong

Chief Roboticist Senior Scientist for Autonomous Systems NASA Ames Research Center

terry.fong@nasa.gov

2018-06-27

NASA LUNAR EXPLORATION

ARTEMIS (2010) LR0 (2009)

ORION SPACECRAFT 2019

SMALL COMMERCIAL LANDERS 2019 ONWARD

ORION CREWEL POWER & PROPULSION ELEMENT 2022 🗴

EXPLORATION

MID-SIZE ROBOTIC

LANDERS 2022

GATEWAY IN LUNAR ORBIT 2024

ADVANCED EXPLORATION LANDER 2026

2022

Gateway Initial Configuration (Notional)

Robotic arm

Gateway

EVA/science airlock elements, logistic element, more docking

Orion

Habitation element, docking

Power Propulsion Element (PPE)

Gateway Initial Elements

Power and Propulsion Element (PPE)

- First gateway capability targeted for launch readiness in 2022
- Power to gateway and externally accommodated elements
- Attitude control, orbit maintenance, and potential uncrewed orbit change
- Communications with Earth, space-to-space communications, and radio frequency relay capability

Habitation

- Habitable volume and short-duration (~4 weeks initially) crew life support
- · Can be docked to the PPE, other elements, and visiting vehicles
- Offers attach points for external robotics, external science payloads, etc.
- Accommodations for crew exercise, science/utilization and stowage

Logistics

- Deliver cargo and supplies to enable extended crew mission durations
- Support science utilization, exploration technology demonstrations, potential commercial utilization

GATEWAY DEVELOPMENT

COUNDATIONAL CATEWAY CADADILITIES

Establishing leadership in deep space and preparing for exploration into the solar system

FOUNDATIONAL GATEWAT CAPABILITIES			
2022	2023	2024	+
50 kW-cless Power & Propulsion Element	Habitation and Utilization	Logistics and Robotic Arm	Airlock

These foundational gateway capabilities can support multiple U.S. and international partner objectives in cislunar space and beyond.

CAPABILITIES

- Supports exploration, science, and commercial activities in cislunar space and beyond
- Includes international and U.S. commercial development of elements and systems
- Provides options to transfer between cislunar orbits when uncrewed
- External robatic arm for berthing, science, exterior payloads, and inspections

OPPORTUNITIES

- Logistics flights and logistics providers
- Use of logistics modules for additional available volume
- Ability to support lunar surface missions

INITIAL SCOPE

- 4 Grew Members
- At least 55 m³ Habitable Volume

Kg

- 30 Day Crew Missions
 - Up to 75mt with Origin decked

Gateway Utilization

Commercial

- Developing overall commercialization strategy
- RFI on commercial uses of a gateway (early Summer 2018)

International

- Developing strategy to involve international, ISS and non-ISS partners
- ESA could make major contributions: transportation and infrastructure

Science and Research

- Identifying potential science opportunities
- Assessing how gateway infrastructure can support future investigations
- Considering findings from Gateway science workshop (Feb 2018)

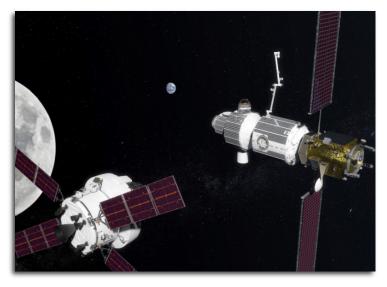
Technology

- Evolve initial capabilities or enable new capabilities for exploration
- Stimulate the development of commercial capabilities for cislunar space
- Evaluating Gateway Technology Utilization RFI (closed June 11)

Lunar Robotics Support

The Gateway could provide infrastructure for lunar robotics

- **Communications relay**: provide (or increase) link availability and bandwidth to the surface particularly polar regions and the far side
- "Orbital computing" (space equivalent of "cloud computing")
 - Off-load processing from rover potentially much higher performance
 - Off-board storage from rover for later triage, downlink, or retrieval
- Mapping from orbit: provide site maps
- Positioning & timing: assist rover localization
- **Power beaming**: provide supplementary and survival energy
- Remote sensing: complement surface level data collection
- Sample return cache: intermediate location for high-grading
- ... and more ...

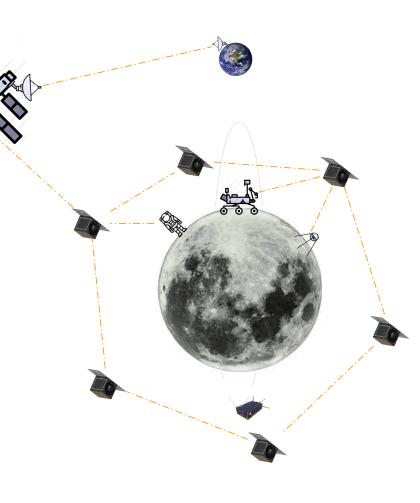

Gateway Technology Utilization RFI

Cloud computing on the Gateway

- Gateway provides "cloud computing" services for lunar missions (orbital or surface) systems, such as robots
- Scalable, on-demand data processing and storage, possibly with auto fall-over for high reliability
- Prototype for deep space missions

Gateway design requirements

- Need to design computing to be usable as on-demand service (reuse cloud computing standards?)
- Might need more on-board computing than is currently baselined
- Requires data communications (not necessarily continuous) between the Gateway and mission systems


Gateway Technology Utilization RFI

On-demand orbital infrastructure

- Gateway deploys a group (swarm) of small-sats to provide orbital infrastructure services to lunar surface missions
- Possible services: comm-relay, orbital imaging, positioning, timing
- Scalable, on-demand support
- Potentially low-cost (particularly for short duration cubesats)
- Prototype for deep-space missions

Gateway design requirements

- Need to design small-sat deployment system
- Requires data communications (not necessarily continuous) between the Gateway and small-sats

Lunar Robotics ConOps

Many ways to conduct lunar robotic missions

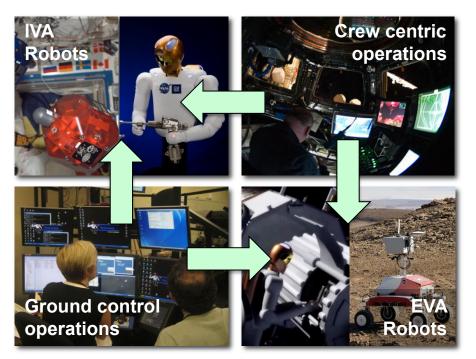
- Astronaut performs real-time, **manual control** ("joysticking" or "teleop")
- Astronaut performs **supervisory control** (robot has some autonomy)
- Mission control performs **manual** or **supervisory control** while Astronaut performs **real-time monitoring** and/or data triage
- Astronaut and mission control time-share the robot
- Astronaut operates robot while at Gateway and Mission control operates robot during Gateway dormant periods
- Gateway provides telerobotic mission support
- ... and more ...

Many variables to consider

- Communication links (availability, bandwidth, latency)
- Mission requirements (activities, timelines, training, etc)
- Orbit (Lagrange points, halo, polar, period, amplitude range, etc.)
- System capabilities (astronauts, ground control, rover, spacecraft)
- Time phasing, schedules, etc.

State-of-the-Art in Space Telerobotics

Human Exploration Telerobotics

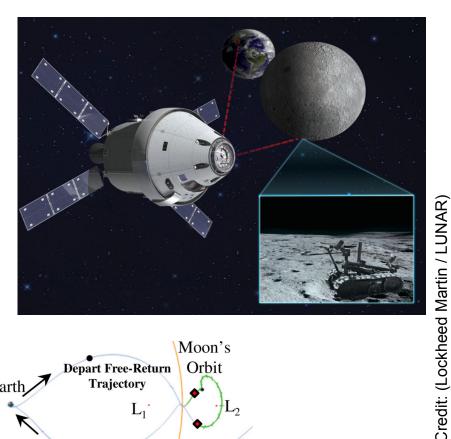

- NASA STMD (2010 present)
- Mature space telerobotics technology to TRL 7
- Use ISS for testing

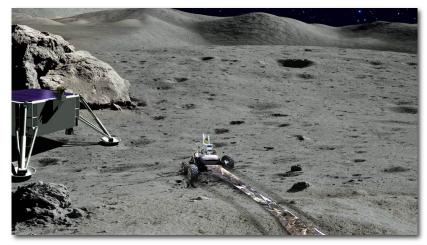
Ground control ops

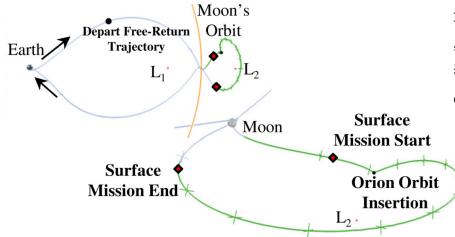
- Mission control remotely operates robot on ISS
- Off-load routine & tedious work from crew to ground control
- In-flight maintenance, repetitive tasks, remote monitoring

Crew centric ops

- Astronauts remotely operate planetary rovers from inside ISS
- Survey, deployment, inspection

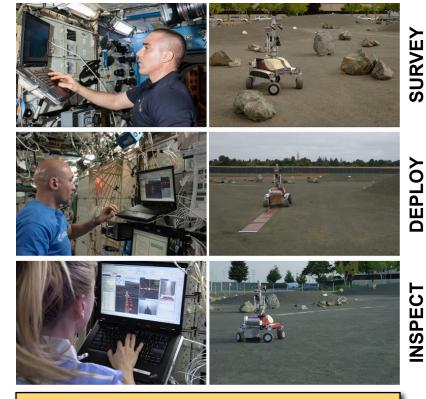





Lunar Mission Concept (2011)

Orion at Earth-Moon L2 Lagrange

- Astronaut remotely operates lunar rover from orbiting spacecraft – AVATAR in real-life!
- Spacecraft orbiting 60,000 km beyond lunar farside
- High-bandwidth, low-latency data communication between spacecraft and surface robot


Lunar Mission Simulation (2013)

"Surface Telerobotics" Project

- Simulation of the "Orion at Earth-Moon L2 Lagrange" concept
- Astronauts in the International Space Station (ISS)
- K10 planetary rover at NASA Ames
- Data comm via satellite relay with short delay (750 msec round-trip)
- Asynchronous bandwidth (3 Kbps downlink, 800 Kbps uplink)

ISS Expedition 36 testing

June 17, 2013 – **C. Cassidy**, survey July 26, 2013 – **L. Parmitano**, deploy Aug 20, 2013 – **K. Nyberg**, inspect

- Human-robot mission sim: site survey, telescope deployment, and inspection
- **Telescope proxy**: Kapton polyimide film roll (no antenna traces, electronics, or receiver)
- **3.5 hr per crew session** ("just in time" training, system checkout, ops, & debrief)
- **Robot ops**: manual control (discrete commands) and supervisory control (task sequence)

Crew Control of a Planetary Rover

It is FEASIBLE for crew to remotely operate a planetary rover from orbit
(depending on conops, communications, control mode, environment, risk tolerance, rover capabilities, task, training, user interface and many, many other factors ...)

NASA LUNAR EXPLORATION

ARTEMIS (2010) LR0 (2009)

ORION SPACECRAFT 2019

SMALL COMMERCIAL LANDERS 2019 ONWARD

2018

POWER & PROPULSION ELEMENT 2022 🗴

ORION CREWEL EXPLORATION

MID-SIZE ROBOTIC LANDERS 2022

2022

GATEWAY IN LUNAR ORBIT 2024

ADVANCED EXPLORATION LANDER 2026

2026

Some Key Questions

How can the Gateway most benefit lunar robotic missions?

- Including astronauts in robot / science operations?
- Providing enabling infrastructure and services?

Should astronauts on the Gateway operate lunar rovers?

- Constrain missions to only operate when astronauts are available?
- Would "real-time operations" unacceptably increase mission risk?

What additional studies, development and testing are needed?

- What data do we need to develop future lunar robotic missions?
- How can we best obtain and validate this data?

