
 

 1 

Developing and diagnosing climate change indicators of regional aerosol optical properties  1 

Ryan C. Sullivana+*, Robert C. Levyb, Arlindo M. da Silvab, and Sara C. Pryora,c 2 

a. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 3 

b. NASA Goddard Space Flight Center, Greenbelt, MD 4 

c. Pervasive Technology Institute, Indiana University, Bloomington, IN 5 

+ Now at Environmental Science Division, Argonne National Laboratory, Argonne, IL, USA  6 

*Corresponding author: 7 

rcsullivan@anl.gov 8 

  9 



 

 2 

Given the importance of aerosol particles to radiative transfer via aerosol-radiation 10 

interactions, a methodology for tracking and diagnosing causes of temporal changes in regional-11 

scale aerosol populations is illustrated. The aerosol optical properties tracked include estimates 12 

of total columnar burden (aerosol optical depth, AOD), dominant size mode (Ångström 13 

exponent, AE), and relative magnitude of radiation scattering versus absorption (single scattering 14 

albedo, SSA), along with metrics of the structure of the spatial field of these properties. Over 15 

well-defined regions of North America, there are generally negative temporal trends in mean and 16 

extreme AOD, and SSA. These are consistent with lower aerosol burdens and transition towards 17 

a relatively absorbing aerosol, driven primarily by declining sulfur dioxide emissions. 18 

Conversely, more remote regions are characterized by increasing mean and extreme AOD that is 19 

attributed to increased local wildfire emissions and long-range (transcontinental) transport. 20 

Regional and national reductions in anthropogenic emissions of aerosol precursors are leading to 21 

declining spatial autocorrelation in the aerosol fields and increased importance of local 22 

anthropogenic emissions in dictating aerosol burdens. However, synoptic types associated with 23 

high aerosol burdens are intensifying (becoming more warm and humid), and thus changes in 24 

synoptic meteorology may be offsetting aerosol burden reductions associated with emissions 25 

legislation. 26 

1 Introduction 27 

Atmospheric aerosol particles (aerosols) impact biogeochemical cycles, human health, 28 

and global and regional climate by scattering and absorbing radiation, acting as cloud 29 

condensation nuclei or ice nucleating particles and altering cloud lifetimes and albedo, and 30 

changing the atmospheric thermal structure and thus atmospheric stability (ref. 1 and references 31 

therein). According to some estimates aerosol particles may have offset 0.9 Wm-2 (– 0.95 to + 32 
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0.05 Wm-2 and – 1.2 to 0.0 Wm-2 for aerosol-radiation (direct) and aerosol-cloud (indirect) 33 

interactions, respectively) of the historical globally-averaged warming due to increased 34 

greenhouse gas concentrations (2.26 to 3.40 Wm-2)2. They have also been implicated as a major 35 

source of regional and sub-regional variations in trends in near-surface temperature (e.g. in the 36 

‘warming hole’ of the central Great Plains)3–7.  37 

Aerosol radiative forcing and climate impact are a function of the aerosol number 38 

concentration, size distribution, and chemical composition, and remain a major source of 39 

uncertainty in quantifying anthropogenic forcing of Earth’s climate2. In contrast to well-mixed 40 

greenhouse gases, as with other short-lived climate forcers, aerosols exhibit much higher 41 

spatiotemporal variability. Local primary aerosol and precursor gas emissions have a major 42 

impact on regional aerosol populations and thus climate impacts. Hence, quantifying the 43 

radiative forcing is challenging and subject to large uncertainties. For example, during 1980 – 44 

2009, the global mean annual aerosol optical depth (AOD), a measure of the extinction of 45 

insolation by atmospheric aerosols and thus the reduction of radiation that reaches Earth’s 46 

surface, was unchanged (i.e. remained within ± 0.01 of an estimated global average of ~ 0.15)8. 47 

However, mean annual AOD decreased by up to 27% over parts of the U.S. and Europe due in 48 

part to regulation of precursor and primary aerosol emissions, while mean annual AOD increased 49 

by up to 22% over countries undergoing large economic development8–10. Following emission 50 

reductions associated with air quality legislation (e.g., U.S. Clean Air Act)11, near-surface fine 51 

aerosol concentrations (PM2.5, i.e. the mass concentration of aerosols with diameters less than 2.5 52 

m) decreased by 40% across the continental U.S. during this period8. This is consistent with a 53 

38% decrease in modeled AOD from 1980 – 2006 (ref. 12), and ~3% yr-1 decrease in summer 54 
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AOD over the eastern U.S. from 2001 – 2013 retrieved using satellite-based remote sensing (the 55 

Multi-angle Imaging SpectroRadiometer (MISR))13. 56 

In order to diagnose and track changes in key observable properties of the climate system 57 

through time, a number of climate indicators (CI) have been developed and applied14,15. Many 58 

agencies that contribute to the U.S. Global Change Research Program (USGCRP) have 59 

developed and applied CIs to document and track changes in the physical, chemical, and 60 

anthropogenic (socio-economic) components of the climate system. The spatial or temporal 61 

resolutions of CIs vary widely: Some are global in scale while others are regional, and while 62 

some focus on the drivers of global change, others are more strongly focused on response 63 

variables. Existing USGCRP CIs thus include: Regional and global air temperature, 64 

precipitation, sea level, sea and land ice, and atmospheric concentrations of carbon dioxide, 65 

methane, nitrogen oxides, and fluorinated gases14. Despite the role of aerosols in perturbing 66 

regional climate, CIs of climate-relevant aerosol properties have yet to be developed15. Herein 67 

we propose a suite of aerosol-CIs, and illustrate how they are derived and applied using regions 68 

of the U.S. National Climate Assessment (NCA) program (Figure 1). We demonstrate how these 69 

aerosol-CIs can be used to quantify variability and temporal trends in aerosol populations, and 70 

attribute changes through time to specific drivers of aerosol variability: Gaseous precursor and 71 

primary aerosol emissions, and meteorological conditions at the synoptic scale.  72 

CIs must be predicated on high quality, uniform (gridded), and publically available data 73 

with well-defined provenance and an expectation that the variables on which they are based will 74 

continue to be measured into the future. Therefore observations, such as those from satellite- or 75 

ground-based remote sensing, are not suitable for deriving aerosol-CIs due to spatiotemporal 76 

discontinuities and a bias towards sampling cloud-free conditions16. Thus, we demonstrate the 77 
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benefit of deriving the proposed aerosol-CIs from the first homogeneous, gridded reanalysis 78 

product that is constrained by satellite-based aerosol and meteorological measurements: Modern-79 

Era Retrospective Analysis for Research and Application, Version 2 (MERRA-2)17,18. MERRA-2 80 

provides gridded global hourly output of observable aerosol optical properties, including in 81 

cloudy-sky scenes, with high fidelity when evaluated relative to independent (non-assimilated) 82 

observations17. 83 

Herein, we develop CIs of aspects of aerosol populations relevant for aerosol-radiation 84 

interactions and climate at the regional scale, and using output from MERRA-2 apply the 85 

aerosol-CIs to each NCA region (Figure 1) to provide an illustrative example of how they can be 86 

used to quantify, characterize, and diagnose causes of historical trends in climate-relevant 87 

aerosol properties. To the first order, three key properties of the aerosol population determine the 88 

magnitude of the forcing due to aerosol-radiation interactions and thus the climate impact: Total 89 

columnar burden, size of the aerosols, and their composition19. Thus the aerosol-CIs we propose 90 

are based on: (1) AOD (550 nm), which is a measure of the column-integrated extinction of 91 

radiation and is approximately proportional to the aerosol mass concentration. (2) Ångström 92 

exponent (AE; 470 – 870 nm) which is qualitatively inversely proportional to particle size with a 93 

secondary dependence on aerosol composition. (3) Single scattering albedo (SSA; 550 nm) 94 

which is the ratio of scattering to total extinction, and describes the relative efficiency of 95 

radiation scattering (leading to an increase in the global albedo and cooling) by aerosols to 96 

radiation absorption (leading to atmospheric warming)2. As aerosols potentially impact regional 97 

scale climate in the U.S.4–7,20, the proposed aerosol-CIs are designed to characterize and track 98 

changes in regionally averaged mean conditions of these variables and their extreme values. 99 

Further aerosol forcing must occur on relatively large scale for an appreciable climate impact, 100 
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and therefore the aerosol-CIs also characterize and track changes in the spatial scales of aerosol 101 

features (both spatial autocorrelation and scales of coherence) (see Methods). 102 

2 Results 103 

2.1 MERRA-2 104 

The release of the MERRA-2 dataset constitutes the first real opportunity to develop and 105 

apply aerosol-CIs for the U.S. NCA regions, or any other part of the globe. Aerosol properties in 106 

the MERRA-2 reanalysis product are derived in part based on assimilation of AOD at 550 nm 107 

derived from remotely sensed properties such as spectral reflectances, solar and instrument 108 

geometry, cloud cover, and surface features into the Goddard Earth Observing System, version 5 109 

(GEOS-5) model18 (see Methods). MERRA-2 has been subject to extensive evaluation relative to 110 

independent observations, and thus only limited additional evaluation was undertaken as part of 111 

this study and is focused on evaluation of the joint probabilities of the key variables considered 112 

herein: AOD, and AE and SSA relative to those from ground-based measurements of columnar 113 

aerosol properties from AErosol RObotic NETwork (AERONET) stations21 (see Methods; 114 

Figure S1).  115 

2.2 Development of aerosol-CIs 116 

AOD, AE, and SSA describe key aspects of aerosol particle populations that have 117 

greatest relevance to direct radiative forcing via aerosol-radiation interactions. Accordingly our 118 

proposed aerosol-CIs are based on daily values derived by averaging in space (i.e. over the NCA 119 

regional definitions shown in Figure 1) and time, the hourly estimates of total column 120 

(anthropogenic and natural) AOD, AE, and SSA. The aerosol-CIs are thus daily mean AOD, AE, 121 

SSA and extreme (90th percentile (P90 AOD)) AOD, along with two key metrics of the spatial 122 

patterns of these variables: The daily global spatial autocorrelation value (characterized using 123 
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Moran’s-I22; AOD-I, AE-I, SSA-I) and the range of spatial coherence as derived using 124 

semivariograms23 of daily AOD, AE, and SSA fields within each region (AOD-SC, AE-SC, 125 

SSA-SC) (Figure 2). Moran’s-I quantifies the degree of spatial clustering in the field and 126 

semivariograms quantify the distance at which two locations become independent. These ten 127 

aerosol-CIs are designed to track evolution of regional aerosol populations in terms of the overall 128 

aerosol columnar burden, average aerosol diameter, relative proportions of absorbing versus 129 

scattering aerosols, and the regional consistency of the spatial patterns of those properties.  130 

Each aerosol-CI contains unique information about regional aerosol properties that have 131 

different implications for direct radiative forcing. These CIs also exhibit intra- and inter-annual 132 

variability and trends that are not consistent across indicators indicating the utility of all of the 133 

proposed aerosol-CIs to trend diagnostic and attribution analyses (Figure 2). To detect potential 134 

redundancy in the aerosol-CIs, a principal component analysis (PCA) was conducted. Although 135 

the aerosol-CIs exhibit co-linearity, the aerosol-CIs tend to fall primarily on orthogonal principal 136 

components, and the PCA indicates that there is not a coherent, physically consistent set of 137 

synthetic, comprehensive indicators across the different regions. Further, for a true climate 138 

impact to be realized, aerosol radiative forcing must be expressed over a large area. Thus, there 139 

is a need to understand and quantify the degree to which climate-relevant aspects of aerosol 140 

populations are regionally coherent. 141 

2.3 Application of the aerosol-CIs to regions of the U.S. NCA 142 

Consistent with previous research, mean and extreme (P90) AOD declined in virtually all 143 

NCA regions over the period 2000 – 2015 (Figure 2). Significant (hereafter α = 0.05, unless 144 

otherwise indicated) decreases are observed in five regions: the lower Great Plains (GPl), 145 

Midwest (MW), Southeast (SE), Northeast (NE), and Alaska (AK), but increased mean and 146 
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extreme AOD is observed for the Northwest (NW), and there was no change in the Southwest 147 

(SW) and upper Great Plains (GPu). To examine trends in AOD, AE, and SSA across their 148 

respective probability distributions (c.f. to only mean and extreme values in the CIs), Figure 3a-c 149 

shows the cumulative distribution functions (cdf) in each region for 2000 – 2015, as well as, the 150 

deviation from the mean cdf for each individual year. The direction of change and the presence 151 

of significant trends are consistent for mean and extreme (P90) AOD in all regions, but the 152 

magnitude of the change is larger for extreme AOD, indicating a narrowing of the AOD 153 

probability distributions (Figure 3a). Significant regional AOD trends are  1 % year-1, while the 154 

magnitude of the extreme AOD trends are 1.2 – 1.4 % year-1 in regions of decreasing AOD and 155 

1.9 % year-1 for the NW (Figures 2, 3, and S2). There is marked seasonality in some regions in 156 

terms of both the magnitude of and temporal trends in the aerosol-CIs. For example, extreme 157 

(P90) AOD significantly decreased in summer (the season of highest historical values), spring, 158 

and fall in NE, summer and fall in SE and MW (p-value = 0.06 for MW summer), and during fall 159 

in GPl. Conversely P90 AOD increased in summer and fall in NW (Figure 3d).  160 

The key utility of including two indices of spatial structure of the fields is illustrated by 161 

the divergent trends in these two aerosol-CIs. All regions exhibit decreased AOD spatial 162 

autocorrelation (AOD-I), but increased AOD spatial coherence (AOD-SC) is observed over the 163 

NW, GPl, MW, SE, and AK, and decreased AOD-SC is observed in the SW (p-value = 0.07), 164 

GPu (p-value = 0.15), and NE (Figures 2 and S3). Causes of these differences and the inter-165 

annual variability in the aerosol-CI trends are discussed below. 166 

Mean AE significantly increased across all eight regions, indicating a decrease in mean 167 

particle size (Figures 2 and S2). This shift to higher AE is observed across the probability 168 

distribution, implying a shift in fine mode aerosols to smaller sizes, as opposed to a relative 169 
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increase in fine versus coarse mode aerosols (Figure 3b). However, trends in the spatial metrics 170 

of AE are not uniform across the regions. Significant negative trends in AE-I are observed in 171 

NW, SW, GPu, MW, and AK (Figures 2 and S3), but only two regions exhibited significant 172 

changes in AE-SC and they showed different signs (increased in SW and decreased in NE). 173 

Thus, there is evidence that as the aerosol populations are, on average, decreasing in diameter at 174 

the regional scale, but there remain sub-regions within many of the NCA regions with high 175 

coarse mode concentrations (e.g., across all days, 50 % of grid cells have AE ≤ 1.2 in the NW, 176 

SW, and GPu; Figure 3b), possibly due to wind-blown dust events24. 177 

Mean SSA and SSA-SC decreases are observed in all eight regions (Figure 2). There are 178 

also decreases in SSA-I for all regions except SE where there were significant increases in SSA-179 

I, although the significance of the trend is lower in GPl (p-value = 0.06) and AK (p-value = 180 

0.16). It is noted that SSA is determined by the aerosol composition and the dynamic range of 181 

SSA in MERRA-2 is lower than observations17,25 (Figure S1); therefore the aerosol-CIs that 182 

relate to SSA must be viewed with caution in the current reanalysis product. However, these 183 

trends are consistent with a tendency towards a relatively more absorbing aerosol, thus reducing 184 

the net cooling from aerosols. Further, the trends in SSA-I and SSA-SC imply aerosol 185 

populations are becoming more spatially heterogeneous in terms of the relative contribution of 186 

absorption to total radiative extinction. 187 

When applied to the U.S. NCA regions, the aerosol-CIs thus indicate substantial 188 

evolution of aerosol populations through time in ways that are relevant to regional climate 189 

forcing. Overall aerosol burdens have declined (2000 – 2015) and on average aerosol populations 190 

have changed to become more dominated by smaller diameter and more absorbing aerosols.  191 
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They are also evolving in a way that causes a decrease in spatial autocorrelation, but increases in 192 

spatial coherence.  193 

2.4 Attribution of temporal trends in the aerosol-CIs 194 

Attribution of observed trends in the aerosol-CIs, particularly deconvoluting changes 195 

resulting from changing anthropogenic emissions, natural emissions, and atmospheric conditions 196 

is critical to demonstrating the effectiveness of emission reduction policies, exploring and 197 

prioritizing potential climate change mitigation strategies, and making projections of possible 198 

future values of the aerosol-CIs. Thus, the aerosol-CIs for the NCA regions are examined below 199 

in the context of these key drivers of aerosol populations. 200 

Aerosol-climate interactions are reciprocal. Aerosols are a major driver of climate 201 

variability and change, but equally changes in climate alter aerosol concentrations and 202 

composition26–28. Further, previous research has illustrated a key role of synoptic scale 203 

meteorological conditions in determining regional aerosol concentrations under the 204 

current29,30,3,31  and possible future climate32,33. Consistent with that research, in each of the NCA 205 

regions, a number of synoptic types (i.e. repeated meteorological patterns) derived in a PCA of 206 

MERRA-2 meteorological output are associated with 10 – 20 % AOD anomalies (positive and 207 

negative from the mean) (Figure 4). The link to meteorological conditions at the synoptic scale is 208 

less pronounced for AE (the anomalies are < 10 %) and it appears SSA is relatively insensitive of 209 

the prevailing meteorological conditions (no synoptic type had a regionally average SSA 210 

anomaly of > 2%). This finding re-emphasizes the complexity of aerosol populations and their 211 

related climate forcing, and highlights the importance of having multiple aerosol-CIs in order to 212 

fully characterize changes in climate-relevant aerosol properties. 213 
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Over all regions, synoptic types characterized by cooler (or milder) and drier conditions 214 

are associated with lower AOD. Conversely, anomalously high AOD is associated with warm 215 

and/or humid synoptic types, consistent with enhanced AOD under stagnant flow29 and aerosol 216 

growth by water uptake34. Over the northern and western regions of the contiguous U.S. (NW, 217 

SW, GPu, MW) southwesterly geostrophic flow is typically associated with positive anomalies 218 

in both mean and extreme AOD, while northwesterly flow is associated with negative anomalies 219 

in mean and extreme AOD (Figure 4). Anomalously low AE in virtually all regions is often 220 

associated with cool, dry synoptic conditions, consistent with an increase in dust loading during 221 

dry conditions24. Conversely, high AE is associated with warm, humid conditions at the synoptic 222 

scale consistent with predominance of hygroscopic secondary aerosols.  223 

Consistent with prior research that has indicated changes in global and regional 224 

temperature and humidity are likely to result in changing characteristics of the synoptic 225 

types29,35, the majority of synoptic types associated with large positive AOD anomalies in each 226 

region exhibit a significant positive trend in PC scores. Conversely, synoptic types associated 227 

with negative AOD anomalies exhibited trends that are divided between increasing and 228 

decreasing trends (Figure 4). While there is evidence that some cool, dry days are also becoming 229 

cooler and drier, the dominant signal in this analysis is thus that synoptic types associated with 230 

elevated AOD are evolving to become more intense, i.e. warm, humid days becoming warmer 231 

and more humid. These changes in the synoptic-scale climate may thus partially offset emissions 232 

reductions26,28. While the intensity of the synoptic types has changed, the frequencies of 233 

individual synoptic types over each region do not exhibit significant temporal trends over the 234 

period 2000 – 2015. 235 
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Consistent with policy enacted under the U.S. Clean Air Act that has resulted in declining 236 

anthropogenic pollutant emissions over the study period, regionally integrated emissions of key 237 

aerosol precursor species, sulfur dioxide (SO2) and nitrogen oxides (NOx), exhibit a significant 238 

negative trend for all eight NCA regions over the period 2000 – 2015. Further ammonia (NH3) 239 

emissions exhibit a negative trend in all regions except the MW and NE, and volatile organic 240 

compounds (VOC) emissions exhibit a negative trend in all regions except the NW and SE 241 

(Figure 5)36. Consistent with this, mean and extreme AOD significantly decreased in GPl, MW, 242 

SE, and NE, and seasonal extreme AOD decreased in the fall in GPl, summer and fall in MW 243 

and SE, and spring, summer, and fall in NE. The overall tendencies in aerosol-CIs, including the 244 

significant decrease in mean and extreme AOD over GPl, MW, SE, and NE, are thus consistent 245 

with a decrease in sulfate aerosol abundance due to the reduction in SO2 emissions (e.g., 246 

correlation coefficients between annual SO2 emissions and extreme summer (except GPl) and 247 

fall AOD are > 0.57 over these regions). Congruent with this decline in SO2 emissions, the 248 

annual deviations from the overall cumulative distribution functions (cdf) imply that almost the 249 

entire probability distribution of AOD has shown a shift towards lower values (Figure 3a). 250 

Further, because sulfate has a high SSA (near unity)37, a reduction in secondary sulfate aerosol 251 

would also contribute to the observed decline in regionally-averaged SSA. Reduced production 252 

of sulfuric acid may also lead to a reduction in mean aerosol diameter, implied by the increase in 253 

AE, due to a reduction in condensational growth. While historic trends in black carbon (BC) 254 

emissions are highly uncertain (e.g., from biomass burning), it is estimated emissions from 255 

mobile sources, the largest BC source in the U.S., decreased by 32 % from 1990 – 2005 (ref. 38). 256 

Further, BC only contributes to ~ 4 % of global AOD18. Thus changes in SSA are likely not due 257 

to changes in anthropogenic BC emissions. Secondary organic aerosols are also a substantial 258 
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component of aerosol mass and AOD over much of the eastern U.S.39. Thus an additional 259 

contributory factor to declining AOD in these regions is the reduction in anthropogenic VOC 260 

emissions and secondary organic aerosol formation. Accordingly, the correlation coefficients 261 

between annual VOC emissions and extreme summer and fall AOD in the NE and MW are > 262 

0.61. Thus, consistent with prior research, historical temporal trends of AOD across much of the 263 

contiguous U.S. are strongly responsive to emission reductions associated with the Clean Air 264 

Act.  265 

Despite reductions in anthropogenic aerosol precursor gas emissions, it is worthy of note 266 

that primary aerosol emissions exhibit a significant trend only in the NW, GPu, and MW (Figure 267 

5), and that biogenic VOC, dust, and wildfire emissions exert a substantial impact on aerosol 268 

burdens and optical properties40,41. For example, there is a clear peak in extreme AOD in the 269 

spring of 2011 in the GPl, MW, and SE when wildfire burned area in the GPl was approximately 270 

four times greater than any other year (Figures 3 and 5). In the GPl, the lack of association (i.e. 271 

lower correlation coefficients) between annual anthropogenic emissions and extreme AOD in 272 

three of the four climatological seasons and the observed decreased SSA may also be in part due 273 

to increased abundance of dust aerosols, consistent with remote sensing measurements that 274 

indicate increased dust-related absorption aerosol optical depth (AAOD) over the central U.S.24.  275 

The declining trend in AOD in AK is also not very strongly linked to changes in anthropogenic 276 

emissions, but there is a significant positive association between extreme summer AOD and 277 

wildfire burned area (r = 0.96). This is clearly evident in 2004, 2009, and 2015, when positive 278 

excursions in monthly burned area (Figure 5) coincide with spikes in summer extreme AOD 279 

(Figure 2). 280 
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Only the NW region exhibits a significant positive trend in annual mean AOD, with 281 

extreme AOD increasing in the summer and fall (Figure 2 and 3). This is despite declines in 282 

regional anthropogenic emissions (Figure 5), and may reflect confounding influences from 283 

increased wildfires (seasonal burned area and extreme AOD in summer and fall exhibit co-284 

variability with r = 0.53 and 0.75, respectively) and long-range transport. For example, Siberian 285 

fires in the summer of 2012 impacted air quality in the Pacific NW41, and are evident in high P90 286 

AOD during the 2012 summer and fall (Figure 2). 287 

The decrease in the spatial autocorrelation in AOD (Figures 2 and S3) along with the 288 

decreased anthropogenic aerosol precursor emissions in each region (Figure 5) indicates an 289 

increasing influence of local sources on sub-regional aerosol concentrations and thus increased 290 

grid cell–to–grid cell variability in aerosol populations. Conversely, scales of spatial coherence 291 

(distance at which grid cells become independent) are increasing, which may be linked to 292 

changes in synoptic scale conditions (Figure 4). High and low AOD are generally associated 293 

with warm, humid and cool, dry conditions, respectively. The positive trend in PC scores for 294 

synoptic types associated with high positive AOD anomalies indicate a tendency towards 295 

intensification of meteorological conditions associated with large direct aerosol radiative forcing 296 

that may be offsetting some of the effects of emission controls. As climate conditions continue to 297 

evolve, this highlights the critical need to better understand the feedbacks between climate and 298 

aerosol populations. 299 

3 Discussion 300 

Use of climate indicators to represent key components of the climate system is an 301 

increasing focus of the U.S. NCA. For this reason, we advocate that aerosol-CIs are urgently 302 

needed to track a key aspect of the radiation balance of Earth, air quality, and biogeochemical 303 
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cycles, and that aerosol-CIs should be generated and interpreted at the regional scale. The 304 

guidance for developing CIs is that they should be relatively straightforward to compute and 305 

readily evaluated in both the contemporary and possible future climate. Thus, the aerosol-CIs we 306 

propose can be readily derived for any gridded data set and therefore can be applied to any 307 

region using current and future generation reanalysis products and/or output from regional and 308 

climate models.  309 

The aerosol-CIs presented herein are designed to be useful in tracking changes in climate 310 

relevant aspects of the aerosol population and to assist in diagnosing the causes of changes in 311 

aerosol populations at the regional scale. Their utility in the former regard is illustrated by 312 

application to the NCA regions, and specifically the finding that mean and extreme AOD and 313 

SSA is declining and AE is increasing over most of the U.S. consistent with a tendency towards 314 

lower aerosol burdens that are increasingly dominated by smaller diameter and relatively more 315 

absorbing aerosols. This implies a decline in the degree to which aerosols have offset greenhouse 316 

gas related warming of the climate over much of the contiguous U.S.   317 

The aerosol-CIs are also defined using two geospatial metrics: Spatial correlation and 318 

spatial coherence. The former (Moran’s I) characterizes normalized co-variability and is a 319 

measure of the degree to which daily fields of AOD, AE, and SSA exhibit spatial clustering. The 320 

latter is a measure of the distance (range in the semivariogram) at which spatial fields become 321 

independent, and thus the extent to which the aerosol forcing can impact regional climate. The 322 

utility of these two spatial metrics in terms of diagnosing causes of changes in aerosol 323 

populations at the regional level is also indicated by the presence of divergent trends in AOD-I 324 

and AOD-SC in the NCA regions. These findings imply a tendency towards more grid cell–to–325 

grid cell variability in aerosol populations, due to declining regional precursor and aerosol 326 
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emissions leading to an increase in the relative importance of local emissions, within larger areas 327 

of increased spatial coherence (i.e. large range values from the semivariograms) in part due to an 328 

increase in the intensity of the predominant modes of synoptic scale meteorology.   329 

Future work is needed to examine aerosol trends in global regions outside of the U.S. that 330 

are characterized by markedly different emissions and climate trends. Additionally, analyses of 331 

reanalysis products are only as good as the assimilation data and model used to develop the 332 

product. Thus the CIs should be applied to future reanalysis products that assimilate improved 333 

bias-correction assimilated data, data from additional, recently launched sensors, and more 334 

sophisticated model frameworks with improve aerosol treatment and emissions inventories. 335 

4 Methods 336 

4.1 MERRA-2 337 

MERRA-2 is derived using assimilation of both meteorological and aerosol observations 338 

every 6 and 3 hours, respectively, into the Goddard Earth Observing System, version 5 (GEOS-339 

5) model18. It provides hourly, global gridded output of meteorological variables and aerosol 340 

optical properties including AOD, AE, and aerosol scattering extinction at 0.625° by 0.5° 341 

resolution. The aerosol characteristics are constrained using a wide suite of remote sensing 342 

products. For example, AOD at 550 nm is derived from Moderate Resolution Imaging 343 

Spectroradiometer (MODIS) measurements on both the Terra and Aqua satellites (Collection 344 

5)42 of reflectances, solar and instrument geometry, cloud cover, and surface features18 using a 345 

neural network retrieval (NNR) trained using AERONET measurements. A similar approach is 346 

used to assimilate Advanced Very High Resolution Radiometer (AVHRR)43 measurements of 347 

radiances, total precipitable water, wind speed, and solar and instrument geometry trained to the 348 

MODIS NNR. MISR AOD is assimilated only over bright surfaces44, and ground-based AOD 349 
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measurements from the AERONET21 are assimilated after 1999. As the density of assimilated 350 

aerosol optical properties and meteorological measurements increases greatly after 2000 (ref. 351 

18,45), the analysis presented here is limited to 2000 – 2015. 352 

MERRA-2 output includes surface short- and longwave radiation fluxes, with and 353 

without clouds, and with and without aerosols, which could be used to estimate aerosol radiative 354 

forcing. However these properties are dependent on the radiative transfer model and treatment of 355 

aerosol optical properties within the reanalysis model. Thus, herein we only use observable 356 

variables that are more closely tied to the assimilated data. 357 

MERRA-2 aerosol properties that are not directly assimilated have been compared to, 358 

and found to be in reasonable agreement with, satellite-based radiometric measurements. For 359 

example, monthly mean biases relative to the Ozone Monitoring Instrument (OMI) retrieved 360 

absorption aerosol optical depth (AAOD) are typically < |0.02| over the NCA regions, and 361 

MERRA-2 reproduces the aerosol vertical profile (e.g., height of peak attenuation backscatter) 362 

retrieved from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) over the 363 

continental U.S. (CONUS)17. MERRA-2 has also been evaluated relative to near-surface 364 

measurements of PM2.5. Again the results indicate a relatively high degree of consistency with 365 

independent observations. For most months across the CONUS, MERRA-2 PM2.5 is within one 366 

standard deviation of the in situ measurements, although there is an underestimation of winter 367 

PM2.5 concentrations over the northwest and northeast U.S., potentially due to lack of nitrate 368 

aerosols in MERRA-2 (ref. 17). 369 

Our analysis of the joint probabilities of AOD, and AE and SSA from MERRA-2 relative 370 

to AERONET, indicate good agreement, although MERRA-2 underestimates the dynamic range 371 

of AE and SSA (Figure S1). Such underestimation is common when comparing gridded aerosol 372 
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datasets that represent area means (~2,500 m2 for MERRA-2) versus in situ observations such as 373 

the pseudo-point measurements from AERONET. MERRA-2 reproduces the observed region-to-374 

region variability in aerosol radiative properties and the MERRA-2 versus AERONET 375 

differences tend to be smaller than region-to-region differences (Figure S1).  376 

Physical variables from MERRA-2 used here within the synoptic-scale meteorological 377 

classification have also been extensively evaluated in the previous MERRA release. For 378 

example, the mean residual between MERRA and observations is < 0.5 hPa for Northern 379 

hemisphere surface pressures and ~ < 1K for temperature through the depth of the atmosphere 380 

relative to radiosonde measurements46. Since the original MERRA reanalysis, the GEOS model 381 

has been further updated to reduce erroneous trends and discontinuities deriving from breaks in 382 

assimilated measurements, and to reduce biases in the water cycle. For all regions in the 383 

CONUS, MERRA-2 mean summer precipitation is within ~ 0.5 mm day-1 (~ 0.1 – 0.2 mm day-1  384 

averaged across the CONUS) of surface rain gauge measurements and exhibits an anomaly 385 

correlation of ~ 0.9 for 1980 – 2011 (ref. 47). 386 

The advantages of using the MERRA-2 product for development of aerosol-CIs are 387 

manifold. These include use of a consistent data assimilation system for the entire period of 388 

record. However, any reanalysis system is subject to inherent uncertainties due either to 389 

assimilated variables and/or the model system. For example, an artificial trend exists in Terra 390 

radiances assimilated into MERRA-2, which may confound the trend analysis presented herein.  391 

Thus trends identified here should be further validated with future MERRA releases in which 392 

this trend is corrected and/or with other aerosol reanalysis products as they become available. 393 
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4.2 Wildfire and anthropogenic emissions 394 

Estimates of wildfire occurrence and spatial extent used herein to diagnose trends in the 395 

aerosol-CIs derive from the Global Fire Emissions Database (GFED4) monthly burned area 396 

product. GFED4 provides monthly estimates of hectares of burned area on a 0.25° grid derived 397 

from the MODIS (Collection 5.1) monthly burned area product48.  398 

Annual estimates of anthropogenic emissions of carbon monoxide (CO), NH3, NOx, 399 

PM10, PM2.5, SO2, and VOCs are also used in attribution of changes in the aerosol-CIs. These 400 

estimates are accumulated for all states within each of the NCA regions and derive from the 401 

EPA’s state level National Emissions Inventory (NEI)36. It is noted that there is inherent 402 

uncertainty in emissions estimates due to spatiotemporal variability in emission sources, 403 

measurement and sampling errors, and the simplification of modeled emissions processes. For 404 

example, SO2 emissions rely on the sulfur content of the combustible material, biogenic 405 

emissions vary with environmental conditions, and NH3 emissions lack wide-spread regulatory 406 

restrictions and ambient NH3 measurements are scarce49,50. Additionally, MERRA-2 aerosol 407 

speciation depends, in part, on the magnitude of prescribed emissions, which do not evolve (i.e. 408 

persistency is assumed) during the later years of the study period18. Despite these uncertainties, 409 

measurements of species important for secondary aerosol formation, e.g. SO2, suggest that trends 410 

in emissions are robust13,51. 411 

4.3 Statistical methods used to derive and interpret the aerosol-CIs  412 

The aerosol-CIs we propose quantify the regionally-averaged mean AOD, AE, and SSA; 413 

extreme (90th percentile) AOD; and two geostatistical metrics of spatial autocorrelation and 414 

spatial coherence of AOD, AE, and SSA.  The regionally averaged mean and P90 values are 415 

computed from hourly output that are aggregated in space and time to generate daily mean 416 
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values for each property that then comprise each CI. While a spatial mean is used here, previous 417 

work indicates that spatiotemporal averages are sensitive to averaging methodology52, 418 

particularly for variables such as AE53. The spatial autocorrelation (AOD-I, AE-I, SSA-I) and 419 

spatial coherence (AOD-SC, AE-SC, SSA-SC) statistics are computed from the daily mean of 420 

the hourly output for each grid cell. 421 

The global spatial autocorrelation for each region and aerosol parameter is computed at 422 

the daily timescale and quantified using Moran’s I22: 423 

𝐼 =
𝑁

∑ ∑ 𝑤𝑖𝑗
𝑁,𝑖≠𝑗
𝑗=1

𝑁
𝑖=1

∑ ∑ 𝑤𝑖𝑗(𝑋𝑖 − 𝑋̅)(𝑋𝑗 − 𝑋̅)
𝑁,𝑖≠𝑗
𝑗=1

𝑁
𝑖=1

∑ (𝑋𝑖 − 𝑋̅)𝑁
𝑖=1

… (1) 424 

𝑤𝑖𝑗 =
1

𝐷𝑖𝑗
2 

1

∑ ∑
1

𝐷𝑖𝑗
2

𝑁,𝑖≠𝑗
𝑗=1

𝑁
𝑖=1

… (2) 425 

where N is the number of grid cells, wij
 is the weight for grid cells i and j, Xi is the daily mean 426 

value (AOD, AE, or SSA) at grid cell i, X̅ is the mean of the daily means for all grid cells, and Dij 427 

is the great circle distance between the centroid of grid cell i and j. Values approaching 1 and -1 428 

indicate positive and negative spatial autocorrelation, respectively, while 0 indicates a random 429 

spatial field. Significance for rejecting the null hypothesis of no spatial autocorrelation is 430 

determined by calculating a z-score for each I: 431 

𝑍 =
𝐼 − 𝐸(𝐼)

𝑉𝑎𝑟(𝐼)
… (3) 432 

𝐸(𝐼) = −
1
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… (4) 433 

𝑉𝑎𝑟(𝐼) =
𝑁𝑆4 − 𝑆3𝑆5

(𝑁 − 1)(𝑁 − 2)(𝑁 − 3) (∑ ∑ 𝑤𝑖𝑗
𝑁,𝑖≠𝑗
𝑗=1

𝑁
𝑖=1 )

2 − 𝐸(𝐼)2 … (5) 434 

𝑆1 =
1

2
∑ ∑ (2𝑤𝑖𝑗)2

𝑁,𝑖≠𝑗

𝑗=1

𝑁

𝑖=1
… (6) 435 



 

 21 
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… (9) 438 

𝑆5 = (𝑁2 − 𝑁)𝑆1 − 2𝑁𝑆2 + 6 (∑ ∑ 𝑤𝑖𝑗

𝑁,𝑖≠𝑗
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2

… (10) 439 

The spatial coherence of each variable in each region is computed using semivariograms which 440 

describe the semivariance as a function of separation distance between all grid cell pairs23: 441 

𝛾(ℎ) =
∑ ∑ [𝑋𝑖 − 𝑋𝑗]2𝑁,𝐷𝑖𝑗∈ℎ

𝑗=1
𝑁,𝑖∈𝑄
𝑖=1

𝑁(ℎ) × |𝑄|
… (11) 442 

Where N(h) is the number of grid cell pairs that are separated by a great circle distance of h, Xi 443 

and Xj are the daily mean values (AOD, AE, or SSA) at grid cells i and j, respectively, h is a bin 444 

range of separation distances, and Q is the set of all grid cells not within three grid cells of the 445 

domain border. The empirical semivariogram fit, γ(ℎ), is binned in 100 km increments (i.e. 446 

γ( 1 − 100 km) includes all grid cell pairs separated by 1 – 100 km). An exponential fit is used 447 

to model γ(ℎ) assuming an exponential decay in correlation with distance and for physical 448 

interpretability of the model53,54. 449 

𝛾′(ℎ) = 𝐶𝑛 + 𝐶𝑝 (1 − 𝑒−
3ℎ
𝑎 ) … (12) 450 

Where γ′(h) is the exponential model fit; Cn is the nugget describing the semivariance at zero 451 

spatial lag, resulting from variability at scales below data resolution54; Cp is the partial sill, where 452 

the sill, Cn + Cp, is the semivariance as h → ∞; and a is the range or distance at which 95% of the 453 
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sill is reached, indicating the distance at which two locations are no longer correlated. γ(ℎ) is 454 

calculated for each day, and γ′(h) is fit to the mean γ(ℎ) for all days in each season53. For the 455 

CIs to be tracked through time, a single daily quantity is required. Thus, the daily “scale of 456 

spatial coherence”, SC, is herein defined as the minimum h where γ(h) > 0.75×Cp(as), where 457 

Cp(as) is the partial sill for that season. While the spatial structure of the AOD and SSA fields is 458 

well represented by an exponential model, within the spatial extent of the individual regions AE 459 

semivariance tends to increase linearly with distance leading to higher uncertainty in a range 460 

determined using the exponential semivariogram model. 461 

Temporal trends in the aerosol-CIs are quantified and the significance determined using 462 

Kendall’s tau-b (τb) rank coefficient55. τb is calculated by comparing all pairs of observations, 463 

{(ti, Xi), (tj, Xj)} where Xi and Xj are the variable (AOD, AE, SSA) at time ti and tj, respectively: 464 

𝜏𝑏 =
𝐶 − 𝐷

√[
𝑁(𝑁 − 1)

2
− ∑
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2
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𝑖=1 ][

𝑁(𝑁 − 1)
2

− ∑
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2
𝑁
𝑖=1 ]

… (13) 465 
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… (14) 466 

𝑡𝑥𝑖 = |𝑋 ∶  𝑋 = 𝑋𝑖| … (15) 467 

𝑡𝑡𝑖 = |𝑡 ∶  𝑡 = 𝑡𝑖| … (16) 468 

where N is the number of observations. τb > 0 indicates a positive trend and τb < 0 indicates a 469 

negative trend. The significance of the trend is quantified using z-scores56: 470 

𝑍 =
𝐶 − 𝐷

√
𝑣𝑜 − 𝑣𝑥 − 𝑣𝑡

18 + 𝑣1 + 𝑣2

… (17) 471 

𝑣0 = 𝑁(𝑁 − 1)(2𝑁 + 5) … (18) 472 
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𝑣𝑥 = ∑ 𝑡𝑥𝑖(𝑡𝑥𝑖 − 1)(2𝑡𝑥𝑖 + 5)
𝑁

𝑖=1
… (19) 473 

𝑣𝑡 = ∑ 𝑡𝑡𝑖(𝑡𝑡𝑖 − 1)(2𝑡𝑡𝑖 + 5)
𝑁

𝑖=1
… (20) 474 

𝑣1 =
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… (21) 475 

𝑣2 =
∑ 𝑡𝑥𝑖(𝑡𝑥𝑖 − 1)(𝑡𝑥𝑖 − 2)𝑁

𝑖=1 ∑ 𝑡𝑡𝑗(𝑡𝑡𝑗 − 1)(𝑡𝑡𝑗 − 2)𝑁
𝑗=1
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(22) 476 

The slope of the trends, in terms of percentage change per year, is estimated to be the slope of a 477 

linear regression fit to the CIs’ time series. 478 

It is hypothesized that changes in anthropogenic and natural precursor and primary 479 

aerosol emissions will be associated with changes in the aerosol populations. The significance of 480 

this association is quantified using the Pearson’s r correlation coefficient. 481 

Prior research indicates that synoptic meteorological conditions are also a key control of 482 

aerosol concentrations29,30. Thus, PCA is used to derive a daily synoptic classification for all 483 

days in the study period and investigate the interaction between synoptic conditions and aerosol 484 

properties, and to determine the impact of meteorology on the CIs trends. Predictors used in the 485 

PCA are air temperature and specific humidity at 700 hPa plus 500 hPa geopotential heights 486 

from MERRA-2. The number of PCs to retain for each region was determined using a scree 487 

test57 and the retained factors are rotated using a Varimax rotation58. Between six and nine 488 

components (i.e. unique synoptic types) were retained for each of the eight NCA regions. The PC 489 

scores for each day (i.e. similarity to the major modes of variability as characterized by the PCs) 490 

are used to track changes in the frequency of each synoptic type (i.e. counts of days with highest 491 

similarity to each of the modes) and the intensity of the types (i.e. the magnitude of the scores for 492 

each PC). The mean anomaly of each aerosol-CI on all days classified by each synoptic type, 493 
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calculated relative to the mean aerosol-CI computed for all days, is used to illustrate the 494 

importance of meteorological conditions at the synoptic (regional) scale in determining aerosol 495 

properties. 496 

4.4 Data availability 497 

MERRA-2 data is available from the Goddard Earth Science Data and Information 498 

Services Center (https://disc.sci.gsfc.nasa.gov/), AERONET data is available from 499 

https://aeronet.gsfc.nasa.gov/, GFED4 is available from http://www.globalfiredata.org/, and NEI 500 

is available from https://www.epa.gov/sites/production/files/2016-12/state_tier1_90-16.xls. 501 
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9 Figure legends 659 

Figure 1. The eight U.S. National Climate Assessment (NCA) regions in which the aerosol-CIs 660 

are computed. The CIs are computed using MERRA-2 daily-averaged output from all 661 

grid cells within the dashed lines enclosing each region. Note the Great Plains region has 662 

been divided into two regions to ease interpretation of the analyses. Abbreviations: AK = 663 

Alaska, NW = Northwest, SW = Southwest, GPu = upper Great Plains, GPl = lower 664 

Great Plains, MW = Midwest, SE = Southeast, and NE = Northeast. Also shown within 665 

the map are the locations of AERONET sites from which data are presented in Figure S1. 666 

Figure was created using MATLAB (2016b; mathworks.com).  667 

Figure 2. a and b) Mean (marker) and ±1 standard deviation (whiskers) values of the aerosol-CIs 668 

during the study period (2000 – 2015). Upward and downward facing triangles indicate 669 

significant positive and negative trends as determined using Kendall’s tau-b, while square 670 

markers indicate no significant trend (at =0.05). c) Percentage change per year in the 671 

CIs estimated using a linear regression fit (shown in Figures S2 and S3). The middle 672 

circles denote the normalized regression slopes (i.e. trends), and the inner and outer 673 

circles are the lower and upper bounds, respectively, of the 95% confidence intervals of 674 

these slopes. Black circles indicate trends that are not significant at =0.05. 675 

Figure 3. Cumulative distribution functions (cdf) of data from 2000 – 2015 for a) AOD, b) AE, 676 

and c) SSA in each region. The cdf for all years is shown in black (labels under lower 677 
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panel), while the deviation from the mean is shown for each year with the color scheme 678 

transitioning from blue (2000) to green (2015) (labels above top panel). d) Time series of 679 

the yearly seasonal mean extreme AOD for each region. Significant trends in the daily 680 

mean values are indicated by a red ‘+’ or ‘-’ in each panel (a-c) for positive and negative 681 

trends, respectively, and to the right of each panel in (d). 682 

Figure 4. Mean synoptic conditions for synoptic types associated with anomalously low and high 683 

AOD for each region (locations shown in Figure 1). The mean temperature at 700 hPa (in 684 

K) are shown by the background colors, the solid black lines depict the 500 hPa 685 

geopotential isoheights (in m), and the red, magenta, cyan, and blue stippling represent 686 

700 hPa specific humidity anomalies -2, -1, +1, and +2 standard deviations from the 687 

mean for all days. The arrows beside the panels indicate the presence and direction of 688 

significant trends in the PC scores associated with these synoptic types. The abscissa and 689 

ordinate axes are longitude (degrees East) and latitude (degrees North), respectively. 690 

Figure 5. a) Time series of annual anthropogenic emissions as reported in the U.S. EPA National 691 

Emissions Inventory of carbon monoxide (CO), ammonia (NH3), nitrogen oxides (NOx), 692 

particulate matter < 10 μm (PM10), fine particulate matter < 2.5 μm (PM2.5), sulfur 693 

dioxide (SO2), and volatile organic compounds (VOC) by region, in thousands of tons per 694 

year36. b) Time series of wildfire occurrence expressed as monthly burned area for each 695 

region, derived from MODIS measurements48. The sign of significant trends are shown 696 

above each panel in a) and next to the legend in b) (*positive trend in NW monthly 697 

burned area p-value = 0.13). 698 
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