
11

(12) United States Patent
Seeger et al.

(54) SIMULATION AND VERIFICATION SYSTEM
AND METHOD

(71) Applicant: United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(72) Inventors: Steven Seeger, Worthington, WV (US);
Daniel Nawrocki, Bridgeport, WV (US)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 702 days.

(21) Appl. No.: 14/335,032

(22) Filed: Jul. 18, 2014

(51) Int. Cl.
H04L 12/26 (2006.01)
H04L 5/16 (2006.01)
H04L 29/06 (2006.01)

(52) U.S. Cl.
CPC H04L 43/0811 (2013.01); H04L 5/16

(2013.01); H04L 43/0864 (2013.01); H04L
69/18 (2013.01); H04L 69/28 (2013.01)

122

102

SEN

6SEND

NO

SEND RESULTS 140

YIELDTOKEN 142

(io) Patent No.: US 10,027,566 B1
(45) Date of Patent: Jul. 17, 2018

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0248208 Al * 11/2006 Walbeck H04L 29/06
709/230

2009/0213850 Al * 8/2009 Viger H04L 47/10
370/389

* cited by examiner

Primary Examiner Ayaz Sheikh

Assistant Examiner Sori Aga
(74) Attorney, Agent, or Firm Matthew F. Johnston;
Bryan A. Geurts; Mark P. Dvorscak

(57) ABSTRACT

A simulation and verification system and method. An
interoperability server provides a communications hub for
communications between communicating nodes. Nodes
connected to a first protocol data bus communicate in a first
protocol, e.g., a half-duplex bus protocol. Nodes connected
to a second protocol data bus communicate in a second
protocol, e.g., a full-duplex bus protocol. A time synchro-
nization bus provides time-frames for synchronizing opera-
tion of connected nodes. Interceptors optionally intercept
communications between nodes.

8 Claims, 4 Drawing Sheets

124

RECEIVINGc.❑
~ NODE

SEND DATA 132

PRE-ACK 134

REPLY 136

POST-ACK 138

120

U.S. Patent Jul. 17, 2018 Sheet 1 of 4 US 10,027,566 B1

104 --~ 111n 114

100

I=

08

U.R. Patent Jul. 17, 2018 Sheet of US 10,027 366 GI

]22 124
]02

—

SENDING RECEIVING
NODE oo NODE

REQUEST TOKEN 126

GIVE TOKEN 128

SEND DATA 130

SEND DATA 132

PRE CK 134

REPLY 136

POSE ACK 138

SEND RESULTS 140

YIELD TOKEN 142

1
5
6

1
2
2

€
E
C
E
I
V
E
 C
H
A
I
N

1
5
8

R
E
P
L
Y
 C
H
A
I
N

O
1
5
0

o
Fi
g.

U.S. Patent Jul. 17, 2018 Sheet 4 of 4

162

ID BLOCKS
FOR SYNC

164

N
TICK?

166 -Z Y
CLIENT
ACTIVITY

168

ACTIVITY N
OIt PLETE?

170 Y

I ELEASE
ERVER

172

TCK
COMPLETE?

174

Fig.

US 10,027,566 B1

160

US 10,027,566 B1

SIMULATION AND VERIFICATION SYSTEM
AND METHOD

ORIGIN OF THE INVENTION

The invention described herein was made by an employee
of the United States Government, and may be manufactured
and used by or for the Government for governmental pur-
poses without the payment of any royalties thereon or
therefor.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention is generally related to developing
and integrating distributed simulation components and more
particularly to a system architecture for independent verifi-
cation and validation in dynamic analysis and verification
and validation, especially for developing and integrating
distributed simulation components.

Background Description

National Aeronautics and Space Administration (NASA)
has developed software intended for use across multiple
NASA missions that employ complex systems. Those mis-
sions include, for example, Global Precipitation Measure-
ment (GPM) and the James Webb Space Telescope (JWST).
Typical systems required for those missions may have many
individual components that must communicate across dif-
ferent, incompatible data and command busses, such as
MIL-STD-1553B and SpaceWire. In addition to interoper-
ability problems encountered in translating messages
between communications protocols, communicating across
these incompatible busses poses complicated timing prob-
lems. Thus, insuring a successful mission requires success-
ful communications. Previously, successful communications
have not been demonstrable, physically or otherwise, until
the system hardware was actually in place.

Thus, there is a need for an independent verification and
validation capability for dynamically analyzing communi-
cations behavior across multiple different busses, and more
particularly, for simulating communications across and
between these different busses.

SUMMARY OF THE INVENTION

An aspect of the invention is a modular and hierarchical
communications architecture for distributed simulation sys-
tems;

Another aspect of the invention is synchronous commu-
nications with communications handshaking, thread syn-
chronization across distributed systems, and a capability of
dynamically intercepting and modifying data;

Yet another aspect of the invention is an interface for
developing software-only simulations;

Yet another aspect of the invention is a consistent and
correct data passing mechanism for simulation components
and provides system users/developers with an interface for
different types of synchronous communications;

Yet another aspect of the invention is a common core layer
providing basic interoperability communications and com-
munications capability features;

Yet another aspect of the invention is an interface for a
simulated bus for distributed communications acting as a

2
foundation for modular protocol implementations such as
MIL-STD-1553B and SpaceWire.
The present invention relates to a simulation and verifi-

cation system and method. An interoperability server pro-
s vides a communications hub for communications between

communicating nodes. Nodes connected to a first protocol
data bus communicate in a first protocol, e.g., a half-duplex
bus protocol. Nodes connected to a second protocol data bus
communicate in a second protocol, e.g., a full-duplex bus

10 protocol. A time synchronization bus provides time-frames
for synchronizing operation of connected nodes. Intercep-
tors optionally intercept communications between nodes.

BRIEF DESCRIPTION OF THE DRAWINGS
15

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

20 FIG. 1 shows an example of a modular communications
architected system for distributed simulation in an indepen-
dent interoperability test capability according to a preferred
embodiment of the present invention;
FIG. 2 shows an example of a bus message sequence

25 diagram in a context between 2 nodes;
FIG. 3 shows an example of interceptor chaining for

interceptor nodes in receive-chain and reply-chain between
sending node and receiving node;
FIG. 4 shows an example of how the time server syn-

30 chronizes simulated components or units within a time
frame.

DESCRIPTION OF PREFERRED
EMBODIMENTS

35

Turning now to the drawings and more particularly FIG.
1 shows an example of a modular communications archi-
tected system 100 for distributed simulation in an indepen-
dent interoperability test capability according to a preferred

40 embodiment of the present invention. In particular, the
present invention provides a consistent and correct data
passing mechanism for simulation components and a user
interface for different, potentially incompatible communi-
cations protocols. In this example, the preferred modular

45 communications architecture 100 includes a server 102 and
a collection of client libraries, e.g., distributed in computers
104, 106, 108, providing different functionality levels.
The preferred server 102, also referred to herein as an

interoperability server, includes a base layer library 110
5o defining the server and a base layer. The base layer is a core

layer for all upper level layers defined by layer libraries 112,
114, and 116. Each layer library 110, 112, 114, and 116 offers
users a corresponding application programming interface
(API) for sending and receiving data with all senders block-

55 ing while receivers process data. The core and protocol
libraries 110, 112, 114, and 116 insure that each layer creates
a bus for the respective bus activity and all implementations
work with lower layers.

Interoperability server 102 is standalone, and provides a
60 central communications hub for one or more busses with a

single thread per bus. The number of busses is limited only
by operating system limits on the number of open connec-
tions and number of threads. Preferably also, Transmission
Control Protocol (TCP) sockets provide the server transport

65 layer. However, the interoperability server 102 is modular to
accommodate different transport mechanisms, as necessary,
or desired.

US 10,027,566 B1
3

The core layer library 110 provides an API to the interop-
erability server 102 for creating a transmit node, a receive
node and bus objects. The interoperability server 102 adds
nodes to bus objects that request send tokens for added
nodes. As the interoperability server 102 receives data, the
library 110 API asynchronously calls node callbacks from a
library-owned thread and blocks the system until that call-
back returns or until a timeout occurs.
The upper layer libraries, also in one or more computers

104, 106, 108 in this example, include a half-duplex bus
layer library 112, a full-duplex layer library 114, and a time
synchronization layer library 116. The layer libraries 112,
114, and 116 define a half-duplex data bus layer, a full-
duplex layer, and a time synchronization layer, shown in
individual computers 104, 106, 108 and, connected together
on network 118 in this example for example only. It should
be noted that in addition to layer libraries 112, 114, and 116,
library user/developers also may make custom higher level
protocols. Preferably, all higher level protocol libraries are
accessible by all participating systems. The higher level
protocol libraries 112, 114, and 116 may be in storage on a
single computer or any number of computers as desired.
The half-duplex bus layer library 112 models the

mechanical, electrical, and functional characteristics of a
half-duplex bus to support simulated serially interfaced
components, e.g., MIL-STD-1553 components. The half-
duplex bus layer library 112 provides bus objects including,
for example, remote terminal (RT), bus controller (BC), and
subaddress (SA) transmit and receive objects. A user may
create subaddresses, add them to remote terminals and add
the remote terminals to the bus. The half-duplex bus proto-
col restricts the ability to transmit. A registered bus control-
ler object, registered with the bus, generates all traffic on the
bus. A newly registered bus controller object only succeeds
if another bus controller node is not already on the bus.
The full-duplex layer library 114 models a low-latency,

full-duplex, point-to-point serial links and packet switching,
e.g., as described by SpaceWire (spacewire.esa.int). The
full-duplex layer library 114 client API provides for full-
duplex, e.g., SpaceWire, busses and nodes. The full-duplex
bus nodes autonomously send traffic over the full-duplex bus
with the nodes providing simple data received callbacks.
The full-duplex layer library 114 also defines router hand-
shake protocol with registered full-duplex bus nodes named
and configured with a router endpoint-name.
The time synchronization layer library 116 models a time

synchronization layer in a time synchronization bus and
provides, for example, bus objects, sender objects and
receiver objects. The time synchronization layer objects
synchronize multiple receiver objects or connected compo-
nents on an arbitrary time-frame. A bus can have only one
sender object at a time. The sender object sends timing ticks
on the bus to receiver objects on the bus. When a receiver
object receives a time tick, the receiver object gets a
callback. The particular computer, for example 108, may
implement a timer, e.g., a flag, to act as the time source on
a time sync bus. In this example, the timer is set to send a
tick every ten milliseconds (10 ms), provided all receivers
acknowledge the tick within the 10 ms following the tick.
When each receiver finishes work it waits for, and blocks
until, the next tick. If any receivers fail to acknowledge, the
timer pauses simulation, allowing the remaining, slower
receivers to finish work for that period without hindering
system performance. When all receivers finish, all receivers
continue to wait and block until the next tick arrives.

FIG. 2 shows an example of a bus message sequence
diagram 120 in a context between 2 nodes 122, 124 with

_►,

reference to FIG. 1. Each node 122, 124 may perform read
and/or write operations as an endpoint, or may act as an
interceptor intercepting (blocking, monitoring, and/or modi-
fying) data passing between endpoints as further described

5 herein below. A reader node, 124 in this example, specifies
a respective desired timeout interval for responding. If the
response time exceeds the timeout, e.g., if receiving data
takes longer than the timeout interval to finish, the interop-
erability server 102 removes the node. A writer node 122

io requests a send token 126, that the interoperability server
102 queues, and releases a token 128 to one writer node 122
at a time, such that only that released node 122 may send
data 130. The interoperability server 102 receives data 130
and sends the data 132 to a reader node 124. The reader node

15 124 responds with a pre-ack 134 to start the timeout period.
Also, the reader may send a reply 136. After the reply 136
and when the read is complete, the reader 124 follows with
a post-ack 138. The interoperability server 102 responds by
sending results 140 to the writer node and the writer node

20 122 yields the token with a yield 142.
Each client protocol library 112, 114, 116 provides access

to each bus and has a different API for interacting with the
buses, both as an endpoint node 122, 124 and an interceptor.
The API constructs for specific half-duplex bus and full-

25 duplex libraries 112, 114, for example, for those applications
map efficiently between the client protocol libraries 112,
114, 116. The client protocol libraries 112, 114, 116 and any
interceptors provide a test and analysis structure to facilitate
design, development and analysis with selective intercep-

30 tion.
The preferred base layer is a core layer for all other layers.

In particular, all communications and synchronization func-
tionality is implemented at the base layer. The base layer
includes an API to interact with the buses. Protocols that

35 interact with the base layer include respective APIs hide and
the base layer from users. The base layer library 110
completely separates server logic from transport with each
message represented as a set of bytes. The interoperability
server 102 sends request messages through the transport

40 layer and passes received messages to application layers for
processing at endpoint nodes 122, 124. The application
layers parse packets and bus logic call commands. A "con-
text' is an instance of a transport link in the interoperability
server 102. For example, the interoperability server 102 uses

45 TCP sockets transport to create contexts/connections to
endpoint nodes 122, 124.
The interoperability server 102 tracks bus contexts of

interest. The interoperability server 102 creates a thread to
operate a uniquely named bus when a context expresses a

50 first interest. Other contexts expressing interest increase the
level of interest in the respective bus. Contexts disconnect-
ing decrease the level of interest in the respective bus. When
the interest level reaches zero, the interoperability server 102
removes the bus and its thread. Each bus tracks which

55 contexts own which nodes. So, if a context disconnects, the
interoperability server 102 removes nodes from the respec-
tive busses, and then, removes the bus interest for that
context. The interoperability server 102 can forcibly remove
a context from the base layer in response to a node timeout,

60 or at the transport level in response to a message timeout.
Even without a timeout, the server transport can close a
context, and signal that the context was closed from the
other side.
The interoperability server 102 manages each uniquely

65 named bus as a separate thread, obviating the need for bus
model synchronization objects such as mutexes. Thus for
each bus, the interoperability server 102 funnels all mes-

US 10,027,566 B1
5

sages received from various contexts through a single work
queue. The interoperability server 102 registers each bus
node with a unique name for the respective bus, and to a
particular context.

So, in this example, when the writer node 122 receives the
token 128, it may send data 130 targeted to one or more
nodes 124 by name, i.e., as a unicast or targeted delivery.
The sender node(s) 122 may also elect to broadcast the data
to all nodes. The interoperability server 102 bundles the send
data by context, i.e., if a context has multiple nodes on it that
are part of the send 130, the interoperability server 102 only
sends 130 a single message on the context that indicates all
destination nodes 124. The interoperability server 102 also
handles interception logic.
The interoperability server 102 expects each context to

start processing at least one node within a selected minimum
time, e.g., two seconds. The pre-ack 134 indicates to the
interoperability server 102 to start tracking a timeout for the
respective reader node(s) 124. When each reader node 124
finishes processing, e.g., the reader sends a reply 136 and/or
simulation completes for that reader node, the reader returns
a post-ack 138. After each post-ack, the context is given
another selected time period, e.g., two seconds, to start
processing the next node, i.e., the interoperability server 102
waits for a pre-ack 134 or a timeout from the next node. The
interoperability server 102 repeats this until all nodes are
completed for that context. Multiple contexts may process
nodes concurrently. Further, multiple reader nodes may
process received data concurrently with the server 102
accepting any and all pre-ack 134 and post-ack 138 pairs,
which may be interspersed.
The writer node 122 may receives replies 136 from

readers one by one in results 140. Unless there are too many
nodes to fit in a single packet, notifications of failed deliv-
eries (i.e., the node is not registered) or node timeouts all
come at the same time. If any reader node 124 fails to send
a post-ack 138 by the end of the timeout, the interoperability
server 102 informs writer node(s)122 of the timeout, or that
the node does not exist on the bus. Thus, the interoperability
server 102 culls any reader node that times-out during data
reception, i.e., any reader node that fails to respond with a
post-ack 138 by the end of the respective timeout. Then, the
interoperability server 102 notifies the writer that the reader
node was culled. If a reader node times out and blocks its
entire context for more than two seconds, the interoperabil-
ity server 102 closes the entire context. If a reader node
disconnects for any reason while it is part of a send, but
before the pre-ack, the interoperability server 102 marks the
node as undeliverable. If a reader node disconnects after
pre-ack, but before processing finishes, the node is undeliv-
erable, but remain in its current state until the end of the
timeout. When the writer node 122 finishes, it must yield
142 the token.

FIG. 3 shows an example of interceptor chaining 150 for
interceptor nodes 152, 154 in receive-chain 156 and reply-
chain 158 between sending node 122 and receiving node
124. Although interceptor nodes 152, 154 are uniquely
named, multiple interceptor nodes 152, 154 may intercept
the same node. Interceptor nodes 152, 154 may register with
the server (102 in FIGS. 1 and 2) before the associated
destination nodes 122, 124 register. The receive-chain 156
indicates data flow from a writer or sending node 122
towards a reader or receiving node 124. Similarly, the
reply-chain 158 indicates the flow of data from the reader
node 124 to the writer node 122.
The interoperability server 102 handles interception logic

by targeting an interceptor 152, 154 by name; allowing the

T
interceptor 152, 154 to run; and then, targeting the reader
124 by name. The interoperability server 102 handles a
broadcast message by building targeted sends to all receivers
intercepted on each round. Thus, clients are not required to

5 handle their own interception logic, which would otherwise
difficult where interceptors may not exist on the same
context as the destination node(s).

So, the interoperability interoperability server 102 notifies
interested interceptor nodes 152, 154 as destination nodes

io 122, 124 come up or go down, i.e., connect or disconnect.
Each interceptor 152, 154 specifies a priority, preferably,
highest to lowest, e.g., from 0 to 254. The interoperability
server 102 controls the order the interceptors 152, 154
receive data according to priority. In the interoperability

15 server 102 the interception logic functions as a stack,
ordering the highest priority interceptors 152 first to inter-
cept data on the receive-chain 156. The lowest priority
interceptors 154 are first to intercept data on the reply-chain
158. Thus, every interceptor 152, 154 receives a chance to

20 reply from the node to which it sent data. Interceptor nodes
152, 154 may register with the interoperability server 102
before destination nodes register. If interceptors are not
registered for a node, a sender sending data to that node is
told the message is undeliverable, because the interceptors

25 do not see the transfer.
The interoperability server 102 handles timing concerns

completely. The base layer library 110 provides for server
queries to determine if a node is registered and to determine
its respective timeout. The base layer provides inter-appli-

so cation synchronization by blocking each sender thread until
all other thread nodes have processed the data. This blocking
includes the time required to obtain the token, making it
possible for a sender thread to block while other prior sends
are processed. The sender node must be aware of how much

35 simulation-time, if any, has passed after each send com-
pletes. For cases where blocking while the other nodes
process the data is unnecessary, the base layer library 110
provides a convenience mechanism to asynchronously
request a send token, and handle the send in a callback. For

40 these cases status callbacks are made upon completion to the
sender as well. Each sender cannot request another send
token until each send completes. The interoperability server
102 also notifies reader nodes if they were disconnected and
if that disconnection was due to timeout or an external

45 disconnect command.
Interceptor nodes 152, 154 use base layer codes to signal

which action to take with a return value from each callback.
The interceptor 152, 154 sends a PASS to the interoperabil-
ity server 102 to indicate that it is sending unmodified data

50 to the next destination on the chain 156. The interceptor 152,
154 sends a MODIFY to the interoperability server 102 to
indicate that the data should be changed as indicated by the
MODIFY prior to sending it to the next destination. In the
receive-chain 156 the interceptor 152, 154 sends a BLOCK

55 to the interoperability server 102 to abort the rest of the
chain 156, to start the reply chain 158, and to pass the data
to output buffers as the blocked node reply. On the reply
chain, a BLOCK is a convenient method to zero out the
reply. Otherwise, there is no actual way to halt the reply

60 chain 158.
Every message is wrapped in a simple socket transport

header. Once the interoperability server 102 reads the first
byte of a new message, it starts a timer. Preferably, each
message includes a size field, an operation identification

65 field, a command field and a payload. Not all operations will
have replies. The interoperability server 102 must receive
the entire message within the previously allotted timeout

US 10,027,566 B1
7

time, e.g. two seconds, of the first byte. If not, the interop-
erability server 102 drops the connection.
The highest order bit of the Operation ID field indicates

whether the packet is a reply to a previous send. The
Command Code field indicates the type of message. The 5
packet payload includes application level protocol and con-
tains corresponding data.
The half-duplex bus layer library 112 provides for map-

ping serial communications, preferably, according to the
MIL-STD-1553B (1553) specification, interfacing simu-
lated hardware to the base layer. The half-duplex bus layer
library 112 interfaces with the base layer through callbacks
and primitives, and facilitates both developing new hard-
ware applications and adapting existing hardware applica- 15
tions, as well. Further, the preferred half-duplex bus layer
library 112 also may include supporting utilities for the
layer. Also, the interceptors may provide other optional
features, such as a graphical user interface (GUI) for moni-
toring traffic on the half duplex bus, or a capability for 20
changing intercepted data to inject faults. The base layer
remains completely hidden from connected serial bus layer
except for custom transport support.
The half-duplex bus layer library 112 includes bus control

and remote terminal interface for simulating unit timing in 25
request responses, e.g., to/from one or more connected units
under test. The bus controller allows concurrent develop-
ment of simulated remote terminals from incomplete hard-
ware models or models being developed. Thus, the present
invention provides remote terminal developers with a set of 30
established interfaces, allowing developers to work simul-
taneously on units for both halves of the simulation irre-
spective of communications protocol. Thus, a remote termi-
nal (RT) developer need not complete work on a bus
controller (BC), because the developer can develop proto- 35
type code and drive the prototype with the simulated con-
troller. Similarly, router support may be incomplete even as
developing and testing a SpaceWire application progresses.
The preferred full-duplex layer library 114 provides for a

router capability for routing packet switching communica- 40
tions e.g., over a SpaceWire bus, with routing information in
message headers, which simplifies client handling. All client
nodes send messages to a single configurable full-duplex
routing application or router. The router determines the
network destination node for each packet. The preferred 45
router simulates network topology representing all Space-
Wire network routers. Similarly, the preferred full-duplex
layer library 114 may include supporting utilities for the
layer, and the interceptors may provide other optional fea-
tures such as a SpaceWire GUI, or a capability for changing 50
intercepted data to inject faults. Thus, the GUIs, e.g., 1553
and SpaceWire, provide visual representations of data and,
when coupled with interceptors, e.g., 152, 154, provide a
capability for intercepting and modifying data, e.g., to inject
faults, between connected components 122, 124. 55

SpaceWire, for example, exists in both the base layer and
the full-duplex layer and uses a client/server approach for
SpaceWire routing. This client/server approach means a
single node cannot drive the full-duplex layer communica-
tions that require client and server cooperation, e.g., a 60
handshake protocol. The base layer remains completely
hidden from the full-duplex layer except for custom trans-
port support.

Thus, the full-duplex layer packets include routing infor-
mation in the messages to determine where on the network 65
to send the packets. It should be noted that the full-duplex
layer library 114 does not assist in creating routing headers,

8
as nodes themselves are expected to create routing headers,
as compared to a hardware/software router creating those
headers.
The full-duplex layer library 114 provides for two busses

with a layer between sending and destination nodes handling
routing. When one node sends to the router, the router sends
to the destination. At this point both the router, as the
destination of the sender, is blocking its sender. The actual
destination is simultaneously blocking the router. This pro-
vides an infinite timeout to account for any possible desti-
nation node timeout that may be specified on the bus.

Although only one router may exist at a time on a bus, a
single router can support many busses simultaneously. When
a node joins the network it sends a message to the router
indicating its presence on the network. Nodes are identified
by names (e.g., addresses) in the configuration file. The
registration handshake ensures each node is known to the
router for the bus. If registration fails the failure is indicated
in the router log file.

Preferably, the time synchronization layer library 116
provides for a time server generating a pseudo-clock for
synchronizing multiple simulated bus components 122, 124.
Each bus is limited to a single time server. However, there
is no limit on the number of time receivers 122,124 on a bus.
Each component 122, 124 has defined inputs and outputs
providing component responses. The simulation time for
component responses is independent of the actual hardware
component response time. Frequently, for example, two
responses on two different components might be timed to
arrive coincidentally in hardware. However, multiple simu-
lated components may generate responses serially or at time
variance with physical response arrival.
The time for each receiver to acknowledge a tick may

vary by the level of work performed by the receiver and the
receiver system state. Simulation for hardware that performs
calculations in milliseconds, for example, may take several
seconds on a computer. This real-time analysis can be
performed without skewing the simulation time because all
other, faster receivers wait for every other slower node to
catch up. Thus, the other components run much slower than
they would otherwise with the presence of the slow simu-
lation component(s).
The time server provides a time sync for any required

synchronization based on simulation time, instead of com-
munication events. The time sync is analogous to an opera-
tion system scheduler interrupt that notifies threads when to
run, if ready. Some bus components may conduct work
performed in frames, where each frame takes some fixed
amount of simulation time. For these components synchro-
nization is extremely important to system functionality, i.e.,
to maintain components synchronized with each other.
Each bus provides some tick rate, and all bus nodes are

expected to have a tick based on some multiple of the tick
rate. The time server broadcasts a tick to all components
connected to a respective bus. Bus nodes are expected to
respond to each tick appropriately. Since the time server
establishes time for each entire bus, connected components
can process data at whatever pace best suits the components.
Bus nodes can register for quick-release ticks, that release
the time server immediately, or hold or block further ticks
normally until all nodes release the time server. Again, it
should be noted that real-time elapse between ticks may vary
depending on the time to simulate the corresponding opera-
tions occurring between the ticks.
The time sync flow can begin either with all bus nodes

performing work from prior to a tick or after all work is
complete with all bus nodes waiting for a tick. When the

US 10,027,566 B1
9

time server sends a tick, the time server blocks issuing
further ticks (i.e., holds) until all bus nodes complete pro-
cesses the tick. When a bus node receives a tick, the node
can block while performing work, or immediately acknowl-
edge the tick to signal that the node does not require further
processing. Similarly the node acknowledges immediately,
to skip ticks while performing work across a multiple of the
periodic tick. Holding the time server allows bus nodes
registered for notification to complete critical work before
the next tick. When a node releases a hold on the time server,
that node can continue work until it arrives a point where it
is to block the time server again. Because the tick ends when
all bus nodes have released the time server, synchronization
is at the end of the tick. Thus, every node that completes
processing for a tick does not receive another tick until all
nodes either timeout or release the time server. This prevents
nodes from starting to process in another tick while other
nodes have blocked the time server. Accordingly, this time
sync prevents out of sync issues by design.

It should be noted that all nodes eventually block waiting
for a tick. In this state, the time server can do required work.
Then the time server sends a tick, and blocks, allowing all
nodes to wake up and do work. The nodes must all complete
that work, block, and wait on the next tick when the server
wakes up. Further, due to this handshaking, nodes must
always be within one frame of each other.

FIG. 4 shows an example of how the time server syn-
chronizes 160 simulated components or units within a time
frame. Each unit identifies 162 corresponding blocks in the
simulation for synchronization, preferably on the fly, prior to
entering/simulating the blocks. Then, the units wait 164 for
the time server to indicate a bus pseudo-clock timing "tick"
demarcating a respective clock period, as well as a time
count for the period. The time always increments by tick
value. However, a different count value may indicate a reset
or another abnormal condition. The time server uses a
specific destination name that ensures only one active node
on a given time sync bus.
At each tick the client begins simulating designated

activity 166. The time server waits 168 for all client activity
to complete. Essentially, the wait 168 puts a hold on the time
server to prevent the current clock period from ending until
all clients complete simulated activity for the current time
period. Bus nodes may register with a multiplier. The
multiplier allows for internal skipping of some number of
ticks. For example, if the time server provides a bus tick
every five virtual milliseconds, a node with a 15 virtual
millisecond period has a multiplier of three. Any node
needing a clock rate that is other than a multiple of an
existing bus requires a new bus.
When each client completes, the respective client releases

170 the time server. The time server checks 172 whether all
clients have completed and continues waiting 168, until
released 170 by all clients. When all clients have completed
172, the time server issues next timing tick 174 to start the
next clock cycle. In this way the time server synchronizes
160 responses from simulated units that physically occur in
the same clock cycle, even where simulated responses arrive
sequentially or out of order. Thus even though in real time
simulation responses complete at different times, the system
treats virtual completion as synchronized, occurring concur-
rently, in common, regular time intervals.
Time sync units, therefore, must block the time server

after receiving tick, when necessary. The time sync library
provides for using a condition variable that notifies when to

10
wait for a tick. The internal callback waits for an indication
to release the time server, which acknowledges data once the
callback returns.

Thus, the modular communications architecture 100 for
5 distributed simulation in the example of FIG. 1 separates

protocol-specific implementations from the core. While spe-
cific bug fixes may affect all layers, and the core function-
ality testing for all layers may be done in one place.

Advantageously, a preferred system provides for devel-
io oping and integrating distributed simulation components

and an interface for building simulation systems. Further, a
preferred system provides independent verification and vali-
dation mechanism for dynamic analysis and verification and
validation of NASA missions, especially for developing and

15 integrating distributed simulation components. The data
interception capability allows for dynamically testing with-
out modifying existing simulation environments. Moreover,
a preferred system provides a consistent and correct data
passing mechanism for simulation components, an interface

20 for different types of synchronous communications, and a
consistent and correct mechanism to pass data over a half-
duplex bus layer. The preferred layered architecture sepa-
rates protocol-specific implementation from the core bus
implementations. Thus, the preferred layered architecture

25 provides for bus specific bug fixes that affect all layers, with
core functionality testing for all layers in one place.

While the invention has been described in terms of
preferred embodiments, those skilled in the art will recog-
nize that the invention can be practiced with modification

30 within the spirit and scope of the appended claims. It is
intended that all such variations and modifications fall
within the scope of the appended claims. Examples and
drawings are, accordingly, to be regarded as illustrative
rather than restrictive.

35

What is claimed is:
1. A method of system simulation and verification, said

method comprising:
requesting a token for inter-bus communications from an

40 interoperability server;
receiving a requested token at a sending node on a first

protocol bus responsive to said request;
sending communications over said first protocol bus to

said interoperability server;
45 forwarding said communications from said interoperabil-

ity server to one or more receiving node;
returning results from each receiving node to said interop-

erability server;
yielding said token, wherein another token request is

50 precluded until said token is yielded; wherein said
returning results comprises;

sending a pre-acknowledge from said receiving node to
said interoperability server responsive to said for-
warded communications; and

55 waiting for a post-acknowledge from said receiving node;
said results being returned from said interoperability
server to said sending node responsive to said interop-
erability server receiving said post-acknowledge;

wherein a timeout occurs whenever said interoperability
60 server fails to receive said pre-acknowledge or said post-

acknowledge within a selected time;
wherein said forwarded communications are directed to a
plurality of receiving nodes, and after receiving a first said
post-acknowledge, returning results further comprises:

65 sending another pre-acknowledge from another said
receiving node to said interoperability server respon-
sive to said first post-acknowledge;

US 10,027,566 B1
11

waiting for another post-acknowledge from said other
receiving node; and

returning to sending another pre-acknowledge until
receiving a pre-acknowledge from the last said receiv-
ing node or until said interoperability server fails to
receive said pre-acknowledge from said last receiving
node, said results being returned from said interoper-
ability server responsive to said interoperability server
receiving the last said post-acknowledge or said last
receiving node times out.

2. A method as in claim 1, wherein said interoperability
server notifies said sending node of communications failure
responsive to a timeout.

3. A method as in claim 1, wherein units on said plurality
of receiving nodes are synchronized in an arbitrary timing-
frame, synchronizing comprising:

sending a timing tick from a clock server, said timing tick
beginning a timing-frame;

beginning simulating execution for one simulated unit;
waiting for an indication from said simulated unit that

simulation is complete for a current clock cycle;
receiving in said clock server said indication from said

simulated unit;
determining if any units on nodes remain for simulation,
and returning to beginning simulating execution for a
next unit when said any units remain for simulation;
and otherwise

returning to sending a next timing tick from said clock
server.

4. A method of system simulation and verification said
method comprising:

requesting a token for inter-bus communications from an
interoperability server;

12
receiving a requested token at a sending node on a first

protocol bus responsive to said request;
sending communications over said first protocol bus to

said interoperability server;
5 forwarding said communications from said interoperabil-

ity server to one or more receiving node;
returning results from each receiving node to said interop-

erability server;
yielding said token, wherein another token request is

10
precluded until said token is yielded; wherein said
interoperability server includes one or more serially
connected interceptors;

sending and forwarding communications comprising
passing said communications from at least one node
through said one or more serially connected intercep-

15 tors to receiver nodes; and
returning results comprising passing said results from one

or more receiver nodes back through said one or more
serially connected interceptors to said at least one node.

5. A method as in claim 4, wherein at least one of said one
20 or more serially connected interceptors modifies said com-

munications prior to passing said communications to said
receiver nodes.

6. A method as in claim 4, said one or more serially
connected interceptors selectively blocking said communi-

25 cations from being passed to one or more of said receiver
nodes.

7. A method as in claim 4, wherein at least one of said one
or more serially connected interceptors modifies said results
prior to passing said results to said at least one node.

30 8. A method as in claim 4, said one or more serially
connected interceptors selectively blocking said results from
passing to said at least one node.

	10027566-p0001.pdf
	10027566-p0002.pdf
	10027566-p0003.pdf
	10027566-p0004.pdf
	10027566-p0005.pdf
	10027566-p0006.pdf
	10027566-p0007.pdf
	10027566-p0008.pdf
	10027566-p0009.pdf
	10027566-p0010.pdf
	10027566-p0011.pdf

