
May 2018

NASA/CR–2018-219828

A Trajectory Algorithm to Support En Route and
Terminal Area Self-Spacing Concepts: Fourth Revision

Terence S. Abbott
Science Applications International Corporation, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research
Center under Contract NNL15AA03B

May 2018

NASA/CR–2018-219828

A Tracjectory Algorithm to Support En Route and
Terminal Area Self-Spacing Concepts: Fourth Revision

Terence S. Abbott
Science Applications International Corporation, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not

constitute an official endorsement, either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

iii

Table	of	Contents	
Nomenclature .. v

Subscripts ... v

Units and Dimensions .. vi

Introduction ... 1

Algorithm Overview ... 2

Algorithm Input Data .. 6

Internal Algorithm Variables .. 6

Description of Major Functions .. 8

Preprocess RF Legs .. 8

Save Selected Input Data ... 12

Convert to Indicated Altitudes ... 12

Generate Initial Tracks and Distances .. 13

Initialize Waypoint Turn Data ... 14

Reinstate the Descent Speeds ... 16

Compute TCP Altitudes ... 16

Copy Crossing Angles ... 21

Meet Cruise CAS Waypoint Restriction .. 21

Add Descent Mach Waypoint .. 30

Compute Mach-to-CAS TCP ... 32

Compute Altitude / CAS Restriction TCP ... 38

Add Final Deceleration .. 40

Add Waypoint at 6.25 nmi ... 45

Compute TCP Speeds .. 50

Compute Secondary Speeds ... 51

Compute Turn Data .. 51

Test for Altitude / CAS Restriction Requirement .. 57

Delete VTCPs .. 57

Update DTG Data .. 58

Check Turn Validity ... 59

Restore the Crossing Angles .. 59

Recover the Initial Mach Segments ... 59

Insert CAS Descent VTCPs ... 61

Compute TCP Times .. 62

Compute TCP Latitude and Longitude Data .. 64

iv

Description of Secondary Functions ... 66

BodDecelerationDistance ... 67

ComputeGndSpeedUsingMachAndTrack .. 67

ComputeGndSpeedUsingTrack .. 67

ComputeGndTrk .. 68

ComputeTcpCas ... 68

ComputeTcpMach .. 73

DeltaAngle ... 79

DoTodAcceleration .. 79

EstimateNextCas .. 80

EstimateNextMach ... 81

GenerateWptWindProfile ... 82

GetTrajectoryData .. 83

GetTrajGndTrk ... 83

HandleDescentAccelDecel ... 84

InterpolateWindAtDistance.. 86

InterpolateWindAtRange ... 88

InterpolateWindWptAltitude .. 88

FindMachCasTransitionAltitude .. 89

RadialRadialIntercept ... 89

RelativeLatLon ... 92

WptInTurn .. 94

Summary ... 95

References ... 96

v

 Nomenclature

2D: 2 dimensional

4D: 4 dimensional

ADS-B: Automatic Dependence Surveillance Broadcast

BOD: Bottom-Of-Descent

CAS: Calibrated Airspeed

DTG: Distance-To-Go

FAF: Final Approach Fix

MSL: Mean Sea Level

RF: Radius-to-Fix

STAR: Standard Terminal Arrival Routes

TAS: True Airspeed

TCP: Trajectory Change Point

TOD: Top-Of-Descent

TTG: Time-To-Go

VTCP: Vertical Trajectory Change Point

Subscripts
Subscripts associated with waypoints and TCPs, e.g., TCP2, denote the location of the waypoint or TCP in
the TCP list. Larger numbers denote locations closer to the end of the list, with the end of the list being
the runway threshold. Subscripts in variables indicate that the variable is associated with the TCP with
that subscript, e.g., Altitude2 is the altitude value associated with TCP2.

vi

Units and Dimensions
Unless specifically defined otherwise, units (dimensions) are as follows:

time: seconds

position: degrees, + north and + east

altitude: feet, above MSL

distance: nautical miles

speed: knots

track: degrees, true, beginning at north, positive clockwise

1

Abstract

This document describes an algorithm for the generation of a four
dimensional trajectory. Input data for this algorithm are similar to an
augmented Standard Terminal Arrival (STAR) with the augmentation in
the form of altitude or speed crossing restrictions at waypoints on the
route. This version of the algorithm now accommodates routes that are
totally in the cruise regime. The algorithm calculates the altitude, speed,
along path distance, and along path time for each waypoint. Wind data
at each of these waypoints are also used for the calculation of ground
speed and turn radius.

Introduction
Concepts for self-spacing of aircraft operating into airport terminal areas have been under development

since the 1970's (refs. 1-19). Interest in these concepts has recently been renewed due to a combination of
emerging, enabling technology (Automatic Dependent Surveillance Broadcast data link, ADS-B) and the
continued growth in air traffic with the ever increasing demand on airport (and runway) throughput.
Terminal area self-spacing has the potential to provide an increase in the accuracy of runway threshold
crossing times, which can lead to a decrease of the variability of the runway threshold crossing times.
This decrease of the variability of the runway threshold crossing times can then lead to an increase in
runway capacity through a reduction of the spacing buffers needed to assure safe separation during
landing operations. Current concepts use a trajectory based technique that allows for the extension of self-
spacing capabilities beyond the terminal area to a point prior to the top of the en route descent.

The overall NASA Langley concept for a trajectory-based solution for en route and terminal area self-
spacing is fairly simple and was documented in references 20-22. By assuming a 4D trajectory for an
aircraft and knowing that aircraft’s position, it is possible to determine where that aircraft is on its
trajectory. Knowing the position on the trajectory, the aircraft’s estimated time-to-go (TTG) to a point can
then be determined. To apply this to a self-spacing concept, a TTG is calculated for a leading aircraft and
for the ownship. Note that the trajectories do not need to be the same. The nominal spacing time and
spacing error can then be computed as:

nominal spacing time = planned spacing time interval + traffic TTG.

spacing error = ownship TTG – nominal spacing time.

The foundation of this spacing concept is the ability to generate a 4D trajectory. The algorithm
presented in this paper uses as input a simple, augmented 2D path definition (i.e., a traditional Standard
Terminal Arrival Route (STAR), with relevant speed and altitude crossing constraints) along with a
forecast wind speed profile for each waypoint. The algorithm then computes a full 4D trajectory defined
by a series of trajectory change points (TCPs). The input speed (Mach or Calibrated Airspeed (CAS)) or
altitude crossing constraint includes the deceleration rate or vertical angle value required to meet the
constraint. The TCPs are computed such that speed values, Mach or CAS, and altitudes change linearly
between them. TCPs also define the beginning and ending segments of turns, with the midpoint defined
as a fly-by waypoint. The algorithm also uses the waypoint forecast wind speed profile in a linear
interpolation to calculate the wind speed at the altitude the computed trajectory crosses the waypoint.
Wind speed values are then used to calculate the ground speeds along the path.

The major complexity in computing a 4D trajectory involves the interrelationship of ground speed with
the path distance around turns. In a turn, the length of the estimated ground path and the associated turn
radius will interact with the waypoint winds and with any change in the specified speed during the turn,
i.e., a speed crossing-restriction at the waypoint. Either of these conditions will cause a change in the
estimated turn radius. The change in the turn radius will affect the length of the ground path which can

2

then interact with the distance to the deceleration point, which thereby affects the turn radius calculation.
To accommodate these interactions, the algorithm uses a multi-pass technique in generating the 4D path,
with the ground path estimation from the previous calculation used as the starting condition for the
current calculation.

Algorithm Overview
The basic functions for this trajectory algorithm are shown in figure 1. Figure 1 also contains logic and

some simple calculations that are not included in the body of this document, e.g., "restore the crossing
angles." Also note that waypoints are considered to be TCPs but not all TCPs are waypoints.

For the 2D input, the first and last waypoints must be fully constrained, i.e., have both a speed and
altitude constraint defined. With the exception of the first waypoint, which is the waypoint farthest from
the runway threshold, constraints must also include a variable that defines the means for meeting that
constraint. For altitude constraints, this is the inertial descent angle; for speed constraints, it is the CAS
deceleration rate. A separate, single Mach-to-CAS transition speed (CAS) value may also be input for
profiles that involve a constant Mach / CAS descent segment. Additionally, an altitude / CAS restriction
(e.g., in the U.S., the 10,000 ft / 250 kt restriction) may also be entered.

The algorithm computes the altitude and speed for each waypoint. It also calculates every point along
the path where an altitude or speed transition occurs. These points are considered vertical TCPs (VTCPs).
TCPs also define the beginning and ending segments of turns, with the midpoint defined as a fly-by
waypoint. Turn data are generated by dividing the turn into two parts (from the beginning of the turn to
the midpoint and from the midpoint to the end of the turn) to provide better ground speed (and resulting
turn radius) data relative to a single segment estimation. A fixed, average bank angle value is used in the
turn radius calculation. The algorithm also uses the forecast wind speed profile for a waypoint in a linear
interpolation to calculate the wind speed at the altitude the computed trajectory crosses the waypoint (if
the crossing altitude is not at a forecast altitude). For non-waypoint TCPs, the generator uses the forecast
wind speed profile from the two waypoints on either side of the TCP in a double linear interpolation
based on altitude and distance (to each waypoint). Of significant importance for the use of the data
generated by this algorithm is that altitude and speeds (Mach or CAS) change linearly between the TCPs,
thus allowing later calculations of DTG or TTG for any point on the path to be easily performed.

3

Figure 1. Basic functions.

Trajectory calculation:
2D input data, crossing data,
and wind forecast data

Copy crossing angles: Beginning at the runway, for TCPs that do not have crossing
angles, copy the downstream angle into this TCP.

Add descent Mach waypoint: If the descent is to be performed initially in a Mach mode
and the descent Mach is different than the cruise Mach, change the descent waypoint
Mach as necessary and add any required, additional TCPs.

Initialize the waypoint turn data: Waypoints that have more than a 3 degree change in
ground track from the previous waypoint are considered turn-waypoints. Mark each as a
turn-waypoint and insert a turn-entry and turn-exit TCP on each side of this waypoint.

Compute the TCP altitudes: Beginning at the runway (the last waypoint) work
backwards and compute the altitude at each prior TCP. If an altitude is computed to be
reached prior to the previous TCP, insert a new altitude TCP.

while looping

continued

Generate the initial tracks and distances: Using great-circle calculations, determine the
distances and ground tracks between waypoints. Calculate the DTG for each waypoint.

from
A

Preprocess RF legs: For each waypoint identified as an RF turn initiation point, generate
one or two pseudo fly-by waypoints for the center of the turn.

Save selected input data: Save the altitude crossing angles for each waypoint, the Mach
for the first waypoint, the descent Mach, and descent CAS values. These values may be
overwritten and will need to be reset to their original values for each iterative loop.

Meet cruise CAS waypoint restriction: If required, change the descent Mach if there is a
cruise CAS restricted waypoint and the computed speed is above the required crossing
speed.

Reinstate the descent speeds: Restore the descent Mach and descent CAS values to their
original values.

Convert to indicated altitudes: For altitudes at or below the barometric altitude
transition altitude (nominally 18,000’), convert the altitude to an indicated altitude.

4

Figure 1 (continued). Basic functions.

Compute the Mach-to-CAS TCP: If required, compute the Mach-to-CAS transition
altitude. Compute the DTG to this altitude and insert the Mach-to-CAS TCP.

Compute secondary speeds for each TCP: Compute the Mach (for a CAS TCP) or CAS
(for a Mach TCP) and ground speed for each TCP.

continued

Compute turn data: For each turn waypoint, use the new speed values to compute the
turn radii. Update the data for the turn waypoint, turn-entry, and turn-exit TCPs.

else if this is not the last loop

Compute the TCP speeds: Beginning at the runway (the last waypoint) work backwards
and compute the speed at each prior TCP. If a speed is computed to be reached before
the next previous TCP, insert a new speed TCP.

Compute an altitude / CAS restriction TCP: In the U.S., this would be the 10,000ft /
250kt speed restriction. If the speed crossing the trajectory at the specific altitude is
greater than the CAS restriction (from the test on the first iteration), place a speed
restriction at this point on the profile.

else if the flag
for an altitude / CAS restriction, based on

prior computations, is true

continued

Add final deceleration: If a deceleration to the final approach speed needs to be reached
prior to the runway, insert the appropriate speed TCP.

Add waypoint at 6.25 nmi: If required, add a waypoint at 6.25 nmi from the runway
threshold.

B

Test for the need for an altitude / CAS restriction: In the U.S., this would be the
10,000ft / 250kt speed restriction. If the speed crossing the trajectory at the specific
altitude is greater than the CAS restriction, set a flag for this requirement to true and
reset the loop counter to its initial value (i.e., start over).

else
if this is the first time through

Delete VTCPs: Delete the VTCPs. Remove all special vertical flags.

5

Figure 1 (concluded). Basic functions.

Update the DTG data: Beginning at the runway, work backwards and compute the DTG
for each TCP, adjusting for the turn distances. Set the flag to only do error testing to
false.

Check turn validity: Check that each turn is completed prior to the next waypoint or the
start of the next turn.

continued

Compute TCP latitude and longitude data: Compute the altitude and longitude data for
the altitude, speed, and Mach / CAS TCPs.

Compute the TCP times: Beginning at the runway (the last waypoint) work backwards
and compute the TTG to each TCP.

terminate

Insert CAS descent VTCPs: Insert vertical TCPs between long constant CAS descent
waypoints to aid in overcoming the TAS estimation error between the waypoints.

Recover the initial Mach segments: If the initial segments should be Mach but have
been internally converted to CAS, attempt to recover the Mach portion.

A

Restore the crossing angles: Restore the altitude crossing angles to their original values.

from
B

Update the DTG data: Beginning at the runway, work backwards and compute the DTG
for each TCP, adjusting for the turn distances. Set the flag to only do error testing to
false.

6

Algorithm Input Data
The algorithm takes as input a list of waypoints, their trajectory-specific data, and associated wind

profile data. The list order must begin with the first waypoint on the trajectory and end with the runway
threshold waypoint. The trajectory-specific data includes: the waypoint's name and latitude / longitude
data, e.g., Latitude2 and Longitude2, with the "2" subscript denoting that this is for the second waypoint;
an altitude crossing restriction, if one exists, and its associated crossing angle, e.g., Crossing Altitude2 and
Crossing Angle2; and a speed crossing restriction (Mach or CAS), if one exists, and its associated CAS
rate, e.g., Crossing CAS2 and Crossing Rate2. A value of 0 as an input for an altitude or speed crossing
constraint denotes that there is no constraint at this point. A Crossing Mach may not occur after any non-
zero Crossing CAS input. The units for Crossing Rate are knots per second.

In this algorithm, a radius-to-fix (RF) segment is indicated by the addition of a center-of-turn position,
e.g., Center of Turn Latitude2 and Center of Turn Longitude2, for the input waypoint at the initiation of
the turn. Additional requirements for the RF segment are provided in a subsequent section.

To accommodate a descent from the cruise altitude, a Mach value, Mach Descent Mach, may be
specified that is different from the cruise Mach value. A CAS value may also be specified for the Mach-
to-CAS transition speed, Mach Transition CAS, during the descent. Additionally, a CAS speed limit at a
defined altitude may also be included. In the U.S., this would typically be set to 250 kt at 10,000 ft.

For routes that terminate at the runway threshold, an input variable, Final Deceleration Type, is used to
accommodate three different means to achieve the speed at the threshold: RUNWAY, where the final
approach speed is met at the runway threshold; STABLE XXXX, where the final approach speed is met at
a trajectory altitude value defined in the XXXX variable; and AT FAF, where the final deceleration
begins at the final approach fix. To support unusual approach geometries where the final approach fix
(FAF) is not the waypoint immediately prior to the runway, the FAF name may be input. Also for routes
that terminate at the runway threshold, the input variable AddMopsRWY625 may be used to invoke the
generation of a special waypoint at 6.25 nmi before the landing threshold of the runway. This latter
capability to support this special waypoint at 6.25 nmi before the threshold, along with associated
crossing altitude and speed conditions, is a requirement of the RTCA Minimum Operational Performance
Standards (MOPS) for Flight-deck Interval Management (FIM) (ref. 23).

For the wind forecast, a minimum of two altitude reports (altitude, wind speed, and wind direction)
should be provided at each waypoint. The altitudes should span the estimated altitude crossing at the
associated waypoint. The algorithm assumes that the input data are valid.

Internal Algorithm Variables
The significant variables computed by this algorithm are as follows:

Data related to the overall path include:

Mach Transition Altitude the computed altitude where the transition from Mach to CAS occurs

NmiToFeet 6076.115486

Data specific to each TCP include:

Altitude the computed altitude at the TCP

CAS the computed CAS at the TCP

7

DTG the computed, cumulative distance from the last waypoint to the TCP

Ground Speed the computed ground speed at the TCP

Ground Track the computed ground track at the TCP

Mach the computed Mach at the TCP

TTG the computed, cumulative time from the last waypoint to the TCP

Additionally, the algorithm denotes TCPs in accordance with how they are generated and are marked
accordingly in the waypoint variable WptType. WptType identifiers are:

 Input, from the input waypoint data;

 An internally generated, radius-to fix (RF) center of turn waypoint;

 Turn-entry, identifying a TCP that marks the start of a turn;

 Turn-exit, identifying a TCP that marks the end of a turn; and

 Vertical TCPs (VTCPs), denoting a change in the altitude or speed profile.

TCPs may also be marked with a vertical identifier, VSegType, denoting one of the following:

 Altitude, denoting a change in the descent angle;

 Speed, denoting a change in the CAS or Mach;

 Top of descent point, TOD;

 Altitude CAS restriction, denoting a speed change due to a speed restriction at a specific altitude, e.g.,
250 kt at 10,000'; and

 Mach-to-CAS, denoting the Mach-to-CAS transition point.

TCPs are also denoted relative to the associated primary speed value, i.e., the crossing speed is Mach or
CAS derived.

There are also several input variables that may become overwritten within the algorithm that are
required to be restored for subsequent calculation cycles within the algorithm. These variables include the
following:

 Saved Altitude Crossing Angle, which is the saved input value of Crossing Angle for each of the
TCP's.

 Saved Mach Descent Mach, which is the saved input value of Mach Descent Mach.

 Saved Mach Transition CAS, which is the saved input value of Mach Transition CAS.

 Saved Mach at First Waypoint, which is the saved input Mach value for the first waypoint, i.e.,
Crossing Machfirst waypoint, assuming that one exists.

8

Description of Major Functions
The functions shown in figure 1 are described in detail in this section. The functions are presented in

the order as shown in figure 1. Secondary functions are described in a subsequent section. In these
descriptions, the waypoints, which are from the input data and are fixed geographic points, are considered
to be TCPs but not all TCPs are waypoints. Nesting levels in the pseudo-code description are denoted by
the level of indentation of the document formatting. Additionally, long sections of logic may end with end
of statements to enhance the legibility of the text.

Preprocess RF Legs
A radius-to-fix (RF) turn segment is a constant radius turn between two waypoints, with lines tangent

to the arc around a center of turn point (fig. 2). This function determines if a valid RF turn exists and if so,
calculates a pseudo-waypoint relative to the center-of-turn point and inserts it into the waypoint list. The
calculated pseudo-waypoint then allows the remainder of the turn calculations performed by this
algorithm to be processed as a standard turn. This function is performed in the following manner:

Figure 2. Example of an RF turn.

error = false

Big Turn Error = false

A set of RF turn waypoints is identified by the inclusion of a non-zero value for the latitude and
longitude for the center of turn point in the data for the RF turn initiation waypoint. Because three
waypoints are needed in an RF turn calculation, two each for the determination of the inbound and
outbound track angles, testing is only performed to the next to the last waypoint.

for (i = index number of the first waypoint + 1; i ≤ index number of the last waypoint - 1; i = i + 1)

Determine if this is an RF turn waypoint via the inclusion of the turn center's latitude and
longitude data.

if ((Center Of Turn Latitudei ≠ 0) and (Center Of Turn Longitudei ≠ 0))

Determine the turn direction.

a1 = arctangent2(sine(Longitudei - Longitudei-1) * cosine(Latitudei), cosine(Latitudei-1) *
sine(Latitudei) - sine(Latitudei-1) * cosine(Latitudei) * cosine(Longitudei - Longitudei-1))

9

a3 = arctangent2(sine(Longitudei+1 - Longitudei) * cosine(Latitudei+1), cosine(Latitudei) *
sine(Latitudei+1) - sine(Latitudei) * cosine(Latitudei+1) * cosine(Longitudei+1 -
 Longitudei))

deltax = DeltaAngle(a1, a3)

where the secondary function DeltaAngle is described in a subsequent section.

If deltax is positive, this is a right-hand turn.

if (deltax ≥ 0) TurnSign = 1

else TurnSign = -1

Calculate the instantaneous angle at the ending waypoint.

a2 = arctangent2(sine(Longitudei+1 - Center Of Turn Longitudei) * cosine(Latitudei+1),
cosine(Center Of Turn Latitudei) * sine(Latitudei+1) - sine(Center Of Turn Latitudei) *
 cosine(Latitudei+1) * cosine(Longitudei+1 - Center Of Turn Longitudei)) +
TurnSign * 90

Adjust a2 such that 0 ≥ a2 ≥ 360

deltaa = DeltaAngle(a1, a2)

Correct the deltaa value if it is in the wrong direction.

if ((TurnSign > 0) and (deltaa < 0))

deltaa = deltaa + 360

else if ((TurnSign < 0) and (deltaa > 0))

deltaa = deltaa - 360

If the turn is greater than 170°, break it into two parts so that the standard turn calculations
can be performed.

if (|deltaa| > 170) BigTurn = true

If the turn is less than 3° or more than 260°, it is in error.

if ((|deltaa| < 3) or (|deltaa| > 260)) error = true

Perform a center-of-turn test.

if (error = false)

The radius for point 1 must equal the radius for point 2.

10

r1 = arccosine(sine(Center Of Turn Latitudei) * sine(Latitudei) + cosine(Center
Of Latitudei) * cosine(Latitudei) * cosine(Center Of Turn Longitudei -
 Longitudei))

r2 = arccosine(sine(Center Of Turn Latitudei) * sine(Latitudei+1) +
cosine(Center Of Turn Latitudei) * cosine(Latitudei+1) *
 cosine(Center Of Turn Longitudei - Longitudei+1))

The radii are considered not equal if the difference is greater than 200 ft. The overall RF
leg is considered in error if the turn radius is greater than 10 nmi.

if ((|r1 - r2| > (200 / NmiToFeet)) or (r1 > 10)) error = True

if (error = false)

If the turn is greater than 170°, generate two waypoints, otherwise, just generate one
waypoint.

if (BigTurn) n = 2

else n = 1

a = TurnSign * 90

for (k = 1; k ≤ n; k = k + 1)

Calculate the pseudo-RF waypoint.

The following is the angle from the turn center toward the pseudo waypoint.

a3 = a1 - a

Adjust a3 such that 0 ≥ a3 ≥ 360

if (BigTurn)

if (k = 1) a1b = a3 + 0.25 * deltaa

else a1b = a3 + 0.75 * deltaa

else

There is just one new waypoint, split the turn in half.

a1b = a3 + 0.5 * deltaa

Adjust a1b such that 0 ≥ a1b ≥ 360

if (k = 1)

11

RadialRadialIntercept(Latitudei, Longitudei, a1,
 Center Of Turn Latitudei, Center Of Turn Longitudei, a1b,
 Latituderf, Longituderf),

noting that Latituderf and Longituderf are returned values.

else

RadialRadialIntercept(Latitudei+1, Longitudei+1, a2 + 180,
 Center Of Turn Latitudei-1, Center Of Turn Longitudei-1, a1b,
 Latituderf, Longituderf),

The new waypoint is inserted at location i+1 in the waypoint list. This inserted
waypoint will appear as an input waypoint to the remainder of the algorithm. The
waypoint is inserted between waypointi and waypointi+1 from the original list. The
function InsertWaypoint should be appropriate for the actual data structure
implementation of this function.

InsertWaypoint(i + 1)

Note that Wpti+1 is the newly created waypoint.

Mark Wpti+1 as though it was an input waypoint and give it a unique name.

Also mark this waypoint as a special, RF turn center waypoint. This special marking
is used in subsequent sections to denote that the center-of-turn point has already been
calculated.

TurnTypei+1 = rf-turn-center

Latitudei+1 = Latituderf

Longitudei+1 = Longituderf

Copy the wind data from Wpti, the RF initiation waypoint, to Wpti+1, the pseudo-
waypoint.

Save the center of turn data. The Turn Data values are associated with each waypoint
or TCP record and contain, if appropriate, data relating to turn conditions for that
TCP.

Turn Data Center Latitudei+1 = Center Of Turn Latitudei

Turn Data Center Longitudei+1 = Center Of Turn Longitudei

Increment i because a waypoint was added and the new waypoint at i + 1 should not
be processed again.

 i = i + 1

end of for (k = 1; k ≤ n; k = k + 1)

12

end of if (error = false)

end of if ((Center Of Turn Latitudei ≠ 0) and (Center Of Turn Longitudei ≠ 0))

end of for (i = index number of the first waypoint + 1; ...)

Save Selected Input Data
This is an initialization function that saves the original input values for the altitude crossing angle of

each waypoint, the Mach for the first waypoint, the descent Mach, and descent CAS. These values are
saved because the input values may be overwritten internal to the algorithm and will need to be reset to
their original values for each iterative loop. The function is performed in the following manner:

for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)
Saved Altitude Crossing Anglei = Crossing Anglei

Saved Mach Descent Mach = Mach Descent Mach

 Saved Mach Transition CAS = Mach Transition CAS

Saved Mach at First Waypoint = Crossing Machfirst waypoint

Convert to Indicated Altitudes
This is an initialization function that converts altitudes at and below the barometric altitude transition

altitude, barometric transition altitude, (nominally 18,000’), to indicated altitudes using the waypoint
barometric setting from the input data. The function is performed in the following manner:

Initialize the value Last Altitude to a very large number.

Last Altitude = 99999

for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

Calculate the indicated altitude only if the waypoint has an altitude constraint.

if (((i = index number of the first waypoint) or (Crossing Anglei > 0) or
 (Crossing Anglei = AUTO DESCENT ANGLE)) and
(Crossing Altitudei <= barometric transition altitude)) then

Crossing Altitudei =
ConvertPressureToIndicatedAltitude(Crossing Altitudei, barometric settingi),

where ConvertPressureToIndicatedAltitude is a standard aeronautical function to convert
pressure altitude to indicated altitude.

if (Crossing Altitudei > barometric transition altitude)
Crossing Altitudei = barometric transition altitude

if (Crossing Altitudei > LastAlt) Crossing Altitudei = LastAlt

LastAlt = Crossing Altitudei

13

Generate Initial Tracks and Distances
This is an initialization function that initializes the Mach Segment flag, denoting that the speed in this

segment is based on Mach, and calculates the point-to-point distances and ground tracks between input
waypoints. Great circle equations are used for these calculations, noting that the various dimensional
conversions, e.g., degrees to radians, are not shown in the following text.

Generate the initial distances, the center-to-center distances, and ground tracks between input
waypoints

for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

Start with setting the Mach segments flags to false.

Mach Segmenti = false

Compute the waypoint-center to waypoint-center distances.

if (i = index number of the first waypoint) Center to Center Distancei = 0

else

Center to Center Distancei =
arccosine(sine(Latitudei-1) * sine(Latitudei) + cosine(Latitudei-1) * cosine(Latitudei) *

cosine(Longitudei-1 - Longitudei))

Ground Tracki-1 =
arctangent2(sine(Longitudei - Longitudei-1) * cosine(Latitudei), cosine(Latitudei-1) *

sine(Latitudei) - sine(Latitudei-1) * cosine(Latitudei) * cosine(Longitudei -
Longitudei-1))

end of for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

Now set the runway's ground track.

Ground Tracklast waypoint = Ground Tracklast waypoint - 1

The cumulative distance, DTG, is computed as follows:

DTGlast waypoint = 0

for (i = index number of the last waypoint; i > index number of the first waypoint; i = i - 1)

DTGi-1 = DTGi + Center to Center Distancei

14

Initialize Waypoint Turn Data
The Initialize Waypoint Turn Data function is used to determine if a turn exists at a waypoint and if so,

inserts turn-entry and turn-exit TCPs. Waypoints that have more than a 3 degree change in ground track
between the previous waypoint and the next waypoint are considered turn-waypoints. The function is
performed in the following manner:

i = index number of the first waypoint + 1

Last Track = Ground Trackfirst waypoint

Note that the first and last waypoints cannot be turns.

while (i < index number of the last waypoint)

Track Angle After = Ground Tracki

a = DeltaAngle(Last Track, Track Angle After)

Check for a turn that is greater than 170 degrees.

if (|a| > 170)

Set an error and ignore the turn.

Mark this as an error condition.

a = 0

If the turn is more than 3-degrees, compute the turn data.

if (|a| > 3)

half turn = a / 2

Track Angle Center = Last Track + half turn

This is the center of the turn, e.g., the original input waypoint.

Ground Tracki = Track Angle Center

Turn Data Track1i = Last Track

Turn Data Track2i = Track Angle After

If this is not an RF turn, then the turn radius needs to be calculated.

if (TurnTypei ≠ rf-turn-center) Turn Data Turn Radiusi = 0

Turn Data Path Distancei = 0

Insert a new TCP at the end of the turn.

15

The new TCP is inserted at location i+1 in the TCP list. The TCP is inserted between TCPi
and TCPi+1 from the original list. The function InsertWaypoint should be appropriate for the
actual data structure implementation of this function.

InsertWaypoint(i + 1)

Note that TCPi+1 is the new TCP.

TCPi+1 = turn-exit

DTG i+1 = DTG i

Ground Track i+1 = Track Angle After

The start of the turn TCP is as follows,

InsertWaypoint(i)

TCPi = turn-entry

Note that the original TCP is now at index i + 1.

DTGi = DTGi+1

Ground Track i = Last Track

Last Track = Track Angle After

i = i + 2

end of if (|a| > 3)

else Last Track = Ground Track i

i = i + 1

end of while (i < index number of the last waypoint)

Effectively, this function:

- Marks each turn-waypoint and sets its ground track angle to the computed angle at the midpoint of
the turn.

- Inserts a co-distance turn-entry TCP before this turn-waypoint with the ground track angle for this
turn-entry TCP set to the value of the inbound ground track angle.

- Inserts a co-distance turn-exit TCP after this turn-waypoint with the ground track angle for this
turn-exit TCP set to the value of the outbound ground track angle.

An example illustrating the inserted turn-start and turn-end TCPs is shown in figure 3.

16

Figure 3. Initialized turn waypoint.

Reinstate the Descent Speeds
The Restore the Descent Speeds function simply replaces the current values for Mach Descent Mach,

Mach Transition CAS, and Crossing Machfirst waypoint with the values that were saved in the function Save
Selected Input Data.

Compute TCP Altitudes
Beginning with the last waypoint, the Compute TCP Altitudes function computes the altitudes at each

previous TCP and inserts any additional altitude TCPs that may be required to denote a change in the
altitude profile. The function uses the current altitude constraint (TCPi in fig. 4), searches backward for
the previous constraint (TCPi-3 in fig. 4), and then computes the distance required to meet this previous
constraint. The altitudes for all of the TCPs within this distance are computed and added to the data for
the TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new altitude VTCP
is inserted at this distance. An example of this is shown in figure 5. In addition, if the Crossing Angle for
a waypoint is set to -99, this denotes that the algorithm is to internally compute the Crossing Angle
between this and the next higher, altitude constrained waypoint, noting that this option should only be
used in situations where the relevant waypoint pairs are known to procedurally have a fixed angle
between them. This function is performed in the following steps:

Figure 4. Input altitude crossing constraints.

Turn waypoint, Ground Tracki = 105o

Turn-entry, Ground Tracki-1 = 90o

Ground Tracki-2 = 90o
Turn-exit, Ground Tracki+1 = 120o

Ground Tracki+2 = 120o
DTGi-1 = DTGi+1 = DTGi

17

Figure 5. Computed altitude profile with TCP added.

Set the current constraint index number, cc, equal to the index number of the last waypoint,

cc = index number of the last waypoint

Set the altitude of this waypoint to its crossing altitude,

Altitudecc = Crossing Altitudecc

Set a flag denoting that the TOD point has not been identified

Have TOD = false

While (cc > index number of the first waypoint)

If this is the TOD, mark this point.

if Have TOD is false and Altitudecc is equal or greater than Altitude1

Have TOD = true

mark this as the TOD point.

Determine if the previous constraint cannot be met.

If (Altitudecc > Crossing Altitudecc)

The constraint has not been made.

If this is the last pass through the algorithm, mark this as an error condition.

Altitudecc = Crossing Altitudecc

Find the prior waypoint index number pc that has an altitude constraint, e.g., a crossing altitude
(Crossing Altitudepc ≠ 0). This may not always be the previous (i.e., cc - 1) waypoint.

Initial condition is the previous TCP.

18

pc = cc - 1

while ((pc > index number of the first waypoint) and ((TCPpc ≠ input waypoint) or
(Crossing Altitude pc = 0))) pc = pc - 1

Save the previous crossing altitude,

Prior Altitude = Crossing Altitudepc

Save the current crossing altitude (Test Altitude) at TCPcc and the descent angle (Test Angle)
noting that the first and last waypoints always have altitude constraints and except for the first
waypoint, all constrained altitude points must have descent angles.

Test Altitude = Crossing Altitudecc

Test Angle = Crossing Anglecc

If the Test Angle value, i.e., AUTO DESCENT ANGLE, denotes that this is angle is to be
computed internally as a linear descent between the two altitude constrained waypoints then the
following calculations are performed:

if (Test Angle = AUTO DESCENT ANGLE)

dx = DTGpc - DTGcc

dy = Prior Altitude - Test Altitude

 Test Angle = arctangent2 (dy, NmiToFeet * dx)

Crossing Anglecc = Test Angle

Test for an extreme angle, e.g., 7.5°.

if (Test Angle > maximum allowable descent angle) mark this as an error condition.

Compute all of the TCP altitudes between the current TCP and the previous crossing waypoint.

k = cc

while k > pc

If the previous altitude has already been reached, set the remaining TCP altitudes to the
previous altitude.

if (Prior Altitude ≤ Test Altitude)

for (k = k - 1; k > pc; k = k - 1) Altitudek = Test Altitude

Set the altitude at the last test point.

Altitudepc = Test Altitude

19

else

Compute the distance from TCPk to the Prior Altitude using the altitude difference
between the Test Altitude and the Prior Altitude with the Test Angle. If there is no point at
this distance, add a TCP at that distance.

Compute the distance dx to make the altitude.

dx = (Prior Altitude - Test Altitude) / (NmiToFeet * tangent(Test Angle))

Compute the altitude z at the previous TCP.

z = ((DTGk-1 - DTGk) * NmiToFeet) * tangent(Test Angle) + Test Altitude

If there is a TCP prior to this distance or if z is very close to the Prior Altitude, compute
and insert its altitude.

if ((DTGk-1 < (DTGk + dx)) or (|z - Prior Altitude| < some small value))

if (|z - Prior Altitude| < some small value) Altitude k-1 = Prior Altitude

else Altitude k-1 = z

Check to see if the constraint has been reached with a 100 ft tolerance; if not, set an
error condition.

if ((k-1) = pc)

if (|Altitudepc - Crossing Altitudepc| > 100ft) mark this as an error condition

Always set the crossing exactly to the crossing value.

Altitudepc = Crossing Altitudepc

Update the Test Altitude.

Test Altitude = Altitude k-1

Decrement the counter to set it to the prior TCP.

k = k - 1

end of if ((DTGk-1 < (DTGk + dx)) or (|z - Prior Altitude| < some small value))

else

The altitude constraint is reached prior to the TCP, a new VTCP will need to be
inserted at that point. The distance to the new TCP is,

d = DTGk + dx

20

Compute the ground track at distance d along the trajectory and save it as Saved
Ground Track.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location k in the TCP list. The VTCP is inserted between
TCPk-1 and TCPk from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.

InsertWaypoint(k)

Update the data for the new VTCP which is now TCPk.

if (VSegTypek = no type) VSegTypek = ALTITUDE

DTGk = d

Altitudek = Prior Altitude

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptInTurn and ComputeGndTrk are described in subsequent
sections.

if (WptInTurn(k)) Ground Trackk = ComputeGndTrk(k, d)

else Ground Trackk = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCPk.

GenerateWptWindProfile(d, TCPk)

Test Altitude = Prior Altitude

Since TCPk, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc = cc + 1

The function loops back to while k > pc.

Now go to the next altitude change segment on the profile.

cc = k

The function loops back to while cc > index number of the first waypoint.

21

Copy Crossing Angles
The Copy Crossing Angles is a simple function that starts with the next to last TCP and copies the

subsequent crossing angle if the current TCP does not have a crossing angle. E.g.,

for (i = index number of the last waypoint - 1; i ≥ index number of the first waypoint; i = i - 1)

if (Crossing Anglei = 0) Crossing Anglei = Crossing Anglei+1

Meet Cruise CAS Waypoint Restriction
The Meet Cruise CAS Waypoint Restriction function changes, if required, the descent Mach if there is a

high altitude, CAS restricted waypoint and the computed speed is above the required crossing speed for
that CAS waypoint.

The calling function provides as input and retains the subsequent outputs for the following variables:
TodId, TodMach, TodMachRate, and MachCasAtTod. The variable TodId is the name of the top-of-
descent waypoint (TOD) and is initialized as an empty string by the calling program. This Meet Cruise
CAS Waypoint Restriction function may modify the Mach and speed change rate that occurs at the TOD,
TodMach and TodMachRate, respectively, and these values are then passed to subsequent functions that
require these data. The variable MachCasAtTod is a flag that if true, indicates that the Mach-to-CAS
transition occurs at the TOD point. This variable is used by the functions Add Descent Mach Waypoint
and Compute Mach-to-CAS TCP.

If the input Mach value for the first waypoint is not valid, i.e., the path does not start with a Mach
segment, the function terminates with MachCasAtTod set to false. Otherwise, the following is performed.

if (Crossing Mach first waypoint = 0) terminate this function. Otherwise,

Set the initial values.

MachCasAtTod = false

MachCasModified = false

CasIndex = index number of the first waypoint

AltAtMach = 0.

LastMach = 0

z = 0

done = false

If the TOD Mach data have been modified in a previous invocation of Add Descent Mach Waypoint,
indicated by a non-empty value for TodId, reset their values.

if (TodId ≠ empty)

fini = false

i = index number of the first waypoint

22

Find the waypoint with the name defined in TodId.

while ((i < (index number of the last waypoint)) and (fini = false))

if (Idi = TodId)

fini = true

Crossing Machi = TodMach

Crossing CASi = 0

Crossing Ratei = TodMachRate

TodId = empty string

i = i + 1

end of if (TodId ≠ empty)

Find the first CAS waypoint.

fini = false

i = index number of the first waypoint

while ((i ≤ index number of the last waypoint) and (fini = false))

if (Crossing CASi > 0)

CasIndex = i

fini = true

i = i + 1

Determine if the trajectory is already at the CAS altitude, i.e., the initial altitude is the CAS altitude,
and if so, start in a CAS mode, not Mach.

if (Crossing Altitudefirst waypoint = AltitudeCasIndex)

done = true

for (k = index number of the first waypoint; k < CasIndex; k = k + 1)

if (Crossing Machk > 0)

Change the route data so that the trajectory is starting in a CAS mode.

Invoke the secondary function MachToCas. This function is described in a subsequent
section.

23

Crossing CASk = MachToCas(Crossing Machk, AltitudeCasIndex)

Crossing Machk = 0

MachSegmentk = false

end of if (Crossing Machk > 0)

if (done = false)

Find the last Mach value.

fini = false

i = index number of the first waypoint

while ((i < index number of the last waypoint) and (fini = false))

if (Crossing CASi > 0) fini = true

else if (Crossing Machi > 0) LastMach = Crossing Machi

i = i + 1

Determine the descent Mach value.

if (Mach Descent Mach ≠ 0) DescentMach = Mach Descent Mach

else DescentMach = LastMach

Determine the Mach-to-CAS transition CAS value.

if (Mach Transition CAS > 0)

MachCas = Mach Transition CAS

if (Mach Transition CAS < Crossing CASCasIndex) MachCas = Crossing CASCasIndex

else MachCas = Crossing CASCasIndex

Find the last Mach altitude.

fini = false

i = index number of the first waypoint

while ((i ≤ index number of the last waypoint) and (fini = false))

if (Crossing CASi > 0) fini = true

else if (Crossing Altitudei > 0) AltAtMach = Crossing Altitudei

24

i = i + 1

Determine if the Mach is slower than the descent CAS.

Invoke the secondary function FindMachCasTransitionAltitude which calculates the altitude
where the Mach and CAS are equal. This function is described in a subsequent section.

z = FindMachCasTransitionAltitude(MachCas, DescentMach)

if (z > Crossing Altitudefirst waypoint)

The path is already below the transition altitude, change the route data so it starts in a CAS
mode.

for (k = index number of the first waypoint; k < index number of the last waypoint; k = k + 1)

done = true

if (Crossing Machk > 0)

Crossing CASk = MachCas

Crossing Machk = 0

MachSegmentk = false

end of if (done = false)

if (done = false)

Find the last Mach value.

fini = false

i = index number of the first waypoint

while ((i ≤ index number of the last waypoint) and (fini = false))

if (Crossing CASi > 0) fini = true

else if (Crossing Machi > 0) LastMach = Crossing Machi

i = i + 1

Determine the descent Mach.

if (Mach Descent Mach ≠ 0) DescentMach = Mach Descent Mach

else DescentMach = LastMach

Find the Mach-to-CAS transition CAS.

25

if (Mach Transition CAS > 0) MachCas = Mach Transition CAS

Make sure that the crossing restriction can be obtained.

if (Mach Transition CAS < Crossing CASCasIndex) MachCas = Crossing CASCasIndex

else MachCas = Crossing CASCasIndex

Find the last Mach altitude.

fini = false

i = index number of the first waypoint

while ((i ≤ index number of the last waypoint) and (fini = false))

if (Crossing CASi > 0) fini = true

else if (Crossing Altitudei > 0) AltAtMach = Crossing Altitudei

i = i + 1

Determine if the Mach is slower than the descent CAS.

z = FindMachCasTransitionAltitude(MachCas, DescentMach)

if (z > Crossing Altitudefirst waypoint)

The path is already below the transition altitude, change the route data so it is starting in a
CAS mode.

for (k = index number of the first waypoint; k < index number of the last waypoint; k = k + 1)

done = true

if (Crossing Machk > 0)

Crossing CASk = MachCas

Crossing Machk = 0

MachSegmentk = false

end of if (done = false)

If the path still starts with a Mach segment, which may have already been modified in this function,
test for other special cases.

if (done = false)

If required, handle the special case of an accelerated descent.

26

if (DescentMach > LastMach)

Invoke the secondary function HandleDescentAccelDecel. This function handles the special
case of a Mach acceleration in the descent where the first CAS crossing restriction cannot be
met. This function is described in a subsequent section. This function may modify the
waypoint data.

HandleDescentAccelDecel(CasIndex, LastMach, MachCasModified, DescentMach,
 MachCas)

If the descent data are changed, recalculate z.

if (MachCasModified)

z = FindMachCasTransitionAltitude (MachCas, DescentMach)

Next, update the waypoint data.

Mach Descent Mach = DescentMach

Mach Transition CAS = MachCas

end of if (DescentMach > LastMach)

if (z < Crossing AltitudeCasIndex)

At this point, the descent CAS or Mach needs to be changed.

If the descent CAS is faster than the crossing CAS, determine if changing the descent CAS
corrects the problem.

fini = false

if (MachCas > Crossing CASCasIndex) then

s = MachToCas(DescentMach, Crossing AltitudeCasIndex)

if (s >= Crossing CASCasIndex) then

MachCas = s

Mach Transition CAS = s

fini = true

m = CasToMach(MachCas, Crossing AltitudeCasIndex)

if ((fini = false) and (m > DescentMach)) then

s = MachToCas(DescentMach, Crossing AltitudeCasIndex)

27

if (s >= Crossing CASCasIndex) then

Change to descent CAS.

MachCas = s

Mach Transition CAS = s

else

Change the descent Mach.

DescentMach = CasToMach(MachCas, Crossing AltitudeCasIndex)

else if (fini = false)

DescentMach = CasToMach(MachCas, Crossing AltitudeCasIndex)

Mach Descent Mach = DescentMach

z = Crossing Altitude CasIndex

Perform an extreme limits test, assuming that a valid Mach value will be between 0.6 and 0.9
Mach.

if ((DescentMach > 0.9) or (DescentMach < 0.6)) mark this as an error condition

end of if (z < Crossing AltitudeCasIndex)

Make sure that there is sufficient distance to slow from the Mach-to-CAS transition speed to
make the crossing CAS.

if ((z ≥ Crossing AltitudeCasIndex) and (MachCas > Crossing CASCasIndex) and
(Crossing RateCasIndex > 0) and (MachCasModified = false))

Find the distance at z. This is an iterative solution.

i = CasIndex - 1

fini = false

Calculate the headwind at the end point. This calculation uses the secondary function
InterpolateWindWptAltitude, described in a subsequent section.

InterpolateWindWptAltitude(Wind ProfileCasIndex, AltitudeCasIndex, Ws, Wd, Td)

HeadWind = Ws * cosine(Wd - GndTrack CasIndex)

CurrentGs = ComputeGndSpeedUsingTrack(Crossing CASCasIndex, GndTrackCasIndex,
AltitudeCasIndex, Ws, Wd, Td)

Iterate = false

28

OnePass = true

MachCasHold = MachCas

LastCut = 0

while (fini = false)

i = CasIndex - 1

while ((i > index number of the first waypoint) and (Altitude i < z)) i = i - 1

if ((Altitudei - Altitudei+1) ≤ 0) a = 0

else a = (z - Altitudei+1) / (Altitudei - Altitudei+1)

Calculate the distance, dx, required to reach the altitude.

dx = a * (DTGi - DTGi+1) + DTGi+1 - DTGCasIndex

InterpolateWindWptAltitude(Wind ProfileCasIndex, z, Ws2, Wd2, Td2)

Hw2 = Ws2 * cosine(Wd2 - GndTracki)

AvgHw = (HeadWind + Hw2) / 2

Invoke the secondary function EstimateNextCas. EstimateNextCas is an iterative function
to estimate the CAS value at the next waypoint.

CasTest =EstimateNextCas(Crossing CASCasIndex, CurrentGs, true, MachCasHold,
 AvgHw, z, dx, Crossing RateCasIndex)

If it is required, set up the iteration values, where these values are in CAS.

if (OnePass = true)

if (CasTest < MachCas) Iterate = true

else fini = true

OnePass = false

Calculate the iteration step size.

LastCut = |MachCas - CasTest|

Limit the step size to no smaller than 2 kt.

if (LastCut < 2) LastCut = 2

if (Iterate)

29

if (MachCas ≥ CasTest) s = MachCas - LastCut

else s = MachCas + LastCut

LastCut = 0.5 * LastCut

if (s > MachCasHold) s = MachCasHold

Determine if the Mach-to-CAS estimate is valid.

if (((s + 0.25) ≥ MachCas) and (|s - MachCas| < 1))

fini = true

Calculate the Mach-to-CAS altitude for the current estimate.

z = FindMachCasTransitionAltitude (MachCas, DescentMach)

Determine if a deceleration is needed prior to the TOD. Add a 50 ft buffer value.

if (z > (AltAtMach + 50))

Find the TOD waypoint.

fini2 = false

j = index number of the first waypoint

while ((j < index number of the last waypoint) and (fini2 = false))

if (Waypointj is marked as the TOD point) fini2 = true

else j = j + 1

The altitude index for the test is the TOD altitude point.

if (fini2 and (i = j))

Mach Descent Mach = CasToMach(Mach Transition CAS, AltAtMach)

MachCasAtTod = true

end of if (z > (AltAtMach + 50))

end of if (((s + 0.25) ≥ MachCas) and (|s - MachCas| < 1))

else

Mach Transition CAS = s

MachCas = s

30

z = FindMachCasTransitionAltitude(MachCas, DescentMach)

if (z > Altitudei) z = Altitudei

j = j + 1

Add a test to limit the number of iterations to 10.

if (j ≥ 10) fini = true

end of if (Iterate)

end of while (fini = false)

end of if (done = false)

Add Descent Mach Waypoint
The Add Descent Mach Waypoint function changes the descent waypoint Mach if the descent Mach,

Mach Descent Mach, is different than the cruise Mach. This function is only invoked if the variable
MachCasAtTod is false. The function also will add any required, additional TCPs.

The calling program provides as input and retains the subsequent outputs for the following variables:
TodId, TodMach, and TodMachRate. The variable TodId is the name of the top-of-descent waypoint and
is initialized as a null string by the calling program. Since this function may overwrite the Mach and
speed change rate for an input waypoint, these variables allow the function to retain the original values for
Mach and speed change rate and to then reset these variables to their original values prior to recalculating
new values.

If the Mach value for the first waypoint is not set, i.e., the path does not start with a Mach segment, or
there is no defined descent Mach, i.e., Mach Descent Mach = 0, the function terminates. Otherwise,

If the previous TOD data for an input waypoint have been changed, these data are restored to their
original values.

fini = false

i = index number of the first waypoint

The last designated Mach waypoint,

LastMachIndex = index number of the first waypoint

The first designated CAS waypoint,

FirstCasIndex = index number of the first waypoint

TodIndex = 0

Find the Mach and CAS waypoints.

fini = false

31

i = index number of the first waypoint

while ((i < index number of the last waypoint) and (fini = false))

if (Crossing Machi > 0) LastMachIndex = i

else if (Crossing CASi > 0)

FirstCasIndex = i

fini = true

i = i + 1

Find the TOD waypoint and Mach.

fini = false

i = index number of the first waypoint

while ((i <index number of the last waypoint) and (fini = false))

if ((Altitudei < Altitudefirst waypoint) or (Cas Crossi > 0))

if (Altitudei ≠ Altitudefirst waypoint) TodIndex = i - 1

else TodIndex = i

fini = true

else if (Crossing Machi > 0) MachAtTod = Crossing Machi

i = i + 1

If the vertical segment type has not been defined, mark this as the TOD.

if ((TodIndex > 0) and (VSegTypeTodIdx = no type)) VSegTypeTodIdx = TOD ALTITUDE

Check for errors. There cannot be a programmed descent Mach if there is a downstream Mach
restriction.

if ((LastMachIndex > TodIndex) or (FirstCasIndex ≤ TodIndex)) mark this as an error condition

else

Save the Mach values for all input waypoints so that they may be reset on subsequent passes back
to their original input values.

if (WptTypeTodIndex = input waypoint)

IdTodIndex = TodId

32

TodMach = Crossing MachTodIndex

TodMachRate = Crossing RateTodIndex

if ((WptTypeTodIndex = input waypoint) and (Crossing RateTodIndex > 0))

CAS Rate = Crossing RateTodIndex

else CAS Rate = 0.75 kt / sec (a default value)

The following is added to force a subsequent speed calculation.

Crossing RateTodIndex = CAS Rate

If the aircraft will slow during the descent, do the following:

if (MachAtTod ≥ Mach Descent Mach)

Overwrite the TOD Mach value.

Crossing MachTodIndex = Mach Descent Mach

else

This is a special case where the aircraft is accelerating to the descent Mach.

Invoke the secondary function DoTodAcceleration. This function is described in a subsequent
section.

DoTodAcceleration(TodIdx, MachAtTod)

Crossing MachTodIndex = MachAtTod

Compute Mach-to-CAS TCP

If a Mach-to-CAS transition is required, this function computes the Mach-to-CAS altitude and inserts a
Mach-to-CAS TCP. This function is only performed if the input data starts with a Mach Crossing Speed
for the first waypoint. The function determines the appropriate Mach and CAS values, calculates the
altitude that these values are equal, and then determines the along-path distance where this altitude occurs
on the profile. Input into this function includes the variable MachCasAtTod. This variable is set in the
function Meet Cruise CAS Waypoint Restriction and indicates that, if true, the Mach-to-CAS transitions
occurs at the TOD point.

The following variables are initialized:

Mach Transition Altitude = 0

where this variable a part of the global path data.

The Mach Segment for each TCP is initialized to false.

for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

33

Mach Segmenti = false

Other local variables are initialized.

fini = false

First CAS = 0

Last Mach = 0

CAS Constraint Flag = true

Mach Index = 0, where this variable is used to designate the last Mach waypoint.

Cas Index = -1, where this variable is used to designate the first CAS waypoint.

CAS Constraint Flag = true

If this is the special case where the TOD is the Mach to CAS transition point, insert the TCP here.
This special case is determined in the function Meet Cruise CAS Waypoint Restriction.

if (MachCasAtTod) then

Find the TOD.

i = index number of the first waypoint

while ((i ≤ index number of the last waypoint) and (fini = false))

if (VSegTypei = TOD ALTITUDE) fini = true

else i = i + 1

InsertWaypoint(i+1)

Copy all of the data from Wpti into Wpti+1

Now set the data in Wpti+1 to the updated values.

VSegTypei+1 = MACH_CAS

Crossing Machi+1 = Mach Descent Mach

Crossing CASi+1 = Mach Transition CAS

Machi+1 = Mach Descent Mach

CASi+1 = Mach Transition CAS

Use the default CAS rate if the current rate is 0.

if (Crossing Ratei+1 = 0) Crossing Ratei+1 = 0.25 kt/sec

34

Mach Transition Altitude = Altitudei+1

Set the Mach flag to true up to and including this point.

for (j = index number of the first waypoint; j <= i+1; j++) Mach Segmentj = true

end of if (MachCasAtTod)

else if (Crossing Machfirst waypoint > 0) then

Perform the standard test for the Mach / CAS transition point.

CAS Constraint Flag = false

i = index number of the first waypoint

while ((i <= index number of the last waypoint) and (fini = false))

if (Crossing Machi > 0) then

Last Mach = Crossing Machi

Mach Index = i

else if (Crossing CASi > 0) then

First CAS = Crossing CASi

CAS Rate = Crossing Ratei

CAS Index = i

CAS Constraint Flag = true

fini = true

i = i + 1

end of while

if (Mach Transition CAS > 0) First CAS = Mach Transition CAS

if (CAS Constraint Flag) then

z = FindMachCasTransitionAltitude(First CAS, Last Mach)

Determine if the very first waypoint is already below the Mach-to-CAS transition altitude and
z is greater or equal to 28,000 ft.

if ((Mach Index = 0) and (z > Altitudefirst waypoint) && (z >= 28000 ft)) then

35

Change the first waypoint to CAS, using the descent CAS value if it is valid.

if (Mach Transition CAS > 0.) Crossing CASfirst waypoint = Mach Transition CAS

else Crossing CASfirst waypoint = First CAS

Set the entire speed profile to CAS.

fini = false

i = index number of the first waypoint

while ((fini = false) and (i < (index number of the last waypoint - 1)))

if (Crossing Machi > 0) Crossing Machi = 0

if (Crossing CASi ≠ 0) fini = true

Mach Transition Altitude = z

Mach Transition CAS = 0

end of if ((Mach Index = 0)...

Otherwise, determine if there is a Mach / CAS transition error.

else if ((z > AltitudeMach Index) or (z < 18000 ft)) then

skip = false

Determine if the trajectory is already at a level altitude.

j = Mach Index

while ((j > index number of the first waypoint) and (WptTypej ≠ Input)) j = j - 1

if (Altitudej = AltitudeCAS Index) then

spd = MachToCas(Crossing MachMach Index, Altitudej)

if (spd >= Crossing CASCAS Index) then

Convert the Mach to a CAS crossing.

Crossing Machj = Crossing MachMach Index

Crossing CASj = spd

Crossing Ratej = Crossing RateCAS Index

Crossing Altitudej = AltitudeCAS Index

36

if (Crossing Anglej = 0) then

if (Crossing AngleCAS Index ≠ 0) Crossing Anglej = Crossing AngleCAS Index

else if (Crossing AngleMach Index ≠ 0) Crossing Anglej = Crossing AngleMach Index

else Crossing Anglej = 2.4 degrees

end if (Crossing Anglej = 0)

VSegTypej = MACH_CAS

Machj = Last Mach

CASj = spd

Mach Transition Altitude = Altitudej

Mach Transition CAS = spd

for (k = index number of the last waypoint; k < j; k++) Mach Segmentk = true

skip = true

end of if (spd >= Crossing CASCAS Index)

end of if (Altitudej = AltitudeCAS Index)

if (skip = false) Set an error indicating a bad Mach-to-CAS transition.

end of else if ((z > AltitudeMach Index)...

else

i = index of the first waypoint + 1

fini = false

while ((i < index of the last waypoint) and (fini = false))

if (Altitudei > z) i = i + 1

else fini = true

Calculate the distance to Altitudei.

z2 = Altitudei-1 - Altitudei

if (z2 <= 0) rz = 0

else rz = (z - Altitudei) / z2

37

d = rz * (DTGi-1 - DTGi) + DTGi

GndTrk = GetTrajGndTrk(d)

InsertWaypoint(i)

WptTypei = VTCP

VSegTypei = MACH_CAS

TurnTypei = no turn

Crossing Machi = Last Mach

Crossing CASi = First CAS

Crossing Ratei = CAS Rate

DTGi = d

Altitudei = z

Crossing Anglei =Altitude Crossing Anglei+1

Ground Tracki = GndTrk

Machi = Last Mach

CASi = First CAS

Mach Transition Altitude = z

Mach Transition CAS = First CAS

Compute and add the wind data at distance d along the path to the data of TCPi.

GenerateWptWindProfile(DTGi, TCPi)

Set the Mach flag for these TCPs.

for (j = index number of the first waypoint; j < i; j++) Mach Segmentj = true

end of else

end of if (CAS Constraint Flag)

else

There are only Mach segments, set the Mach flags to true.

for (j = index number of the first waypoint; j < index number of the last waypoint; j++)

38

 Mach Segmentj = true
end of else if (Crossing Machfirst waypoint > 0)

Compute Altitude / CAS Restriction TCP
If an altitude / CAS restriction is required, the Compute Altitude / CAS Restriction TCP function

computes the altitude / CAS restriction point and inserts an altitude / CAS TCP. This is the (U.S.) point
where the trajectory transitions through 10,000 ft and a 250 kt restriction is required. This function is only
performed if the previously computed flag Need10KRestriction is true. The function determines the
along-path distance where this altitude / CAS occurs on the profile. A TCP is then inserted into the TCP
list at this point. The restriction values are Descent Crossing Altitude and Descent Crossing CAS.

Find the first TCP that is below the Descent Crossing Altitude in the list.

i = index number of the first waypoint

k = i

fini = false

while ((i <index number of the last waypoint) and (fini = false))

if (Altitudei < ConvertPressureToIndicatedAltitude(Descent Crossing Altitude,
barometric settingi)

k = i

fini = true

i = i + 1

Find the last CAS restriction prior to the first waypoint below Descent Crossing Altitude.

i = k - 1

fini = false

Last CAS = 0

while ((i > 0) and (fini = false))

if (Crossing CASi > 0)

Last CAS = Crossing CASi

fini = true

i = i - 1

Determine if an altitude or CAS TCP is required. If it is, add it.

if ((TCPk is a Mach segment) and (Last CAS > Descent Crossing CAS))

39

i = k

DescentCrossingAltitude = ConvertPressureToIndicatedAltitude(Descent Crossing Altitude,
barometric settingi)

Find the distance to this altitude.

x = Altitudei-1 - Altitudei

if (x ≤ 0) ratio = 0

else ratio = (Descent Crossing Altitude - Altitudei) / x

d = ratio * (DTGi-1 - DTGi) + DTGi

Compute the ground track at distance d along the trajectory and save it as Saved Ground Track.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new TCP at location i in the TCP list. The TCP is inserted between TCPi-1 and TCPi from
the original list. The function InsertWaypoint should be appropriate for the actual data structure
implementation of this function.

InsertWaypoint(i)

Mark this TCP as the altitude / CAS restriction TCP.

VSegTypei = altitude CAS restriction

TurnTypei = no turn

Add the data for this new TCP.

Crossing Machi = 0

Crossing CASi = Descent Crossing CAS

Use a high value, arbitrary CAS rate.

CAS Ratei = 0.75 kt / sec

DTGi = d

Altitudei = Descent Crossing Altitude

Crossing Anglei = Crossing Anglei+1

Set the Mach flag for TCPi to false

Ground Tracki = Saved Ground Track

Machi = 0

40

CASi = Descent Crossing CAS

Compute and add the wind data at distance d along the path to the data of TCPi.

GenerateWptWindProfile(DTGi, TCPi)

Add Final Deceleration
The Add Final deceleration function generates the appropriate speed TCP's for the case where either

the deceleration to the final approach speed is to begin at the Final Approach Fix or the deceleration is to
end at a specific altitude, Stable Altitude. This latter option is to support the case, which is typical for air
transport operations, where a stable approach is required at and below a specific altitude. This function
may only be invoked if the last waypoint is the runway threshold and the input crossing speed is a valid
CAS value.

if (((Final Deceleration Option = AT FAF) or (Final Deceleration Option = STABLE)) and
 (Crossing CASlast waypoint > 0)) then

The speed specified at the last waypoint, which must be the runway, is the target speed for these
options. This speed should be the corrected final approach speed, CFAS.

CFAS = Crossing CASlast waypoint

Find the waypoint index number for the waypoint used as the FAF. The default value is the input
waypoint just before the last waypoint. If there is a FAF waypoint named in the input data,
NamedFaf, then use that waypoint.

FafWpt = index number of the last waypoint - 1

if (NamedFaf) then

Find this waypoint by name.

found = false

k = FafWpt

while ((found = false) and (k > index number of the first waypoint))

if (NamedFaf = Idk) found = true

else k = k - 1

if (found) FafWpt = k

else

This is the default waypoint. Find it in the input data.

while ((FafWpt > index number of the first waypoint) and (WptTypeFafWpt ≠input waypoint))

FafWpt = FafWpt - 1

41

The following is for the deceleration at the FAF.

if (Final Deceleration Option = AT FAF) then

delta = Crossing CASFafWpt - CFAS

Find the time required to reach the final speed.

t = delta / Crossing Ratelast waypoint / 3600

Find the FAF altitude.

if (Crossing AltitudeFafWpt > 0)

AltitudeFaf = Crossing AltitudeFafWpt

else if (Crossing Anglelast waypoint ≤ 0)

AltitudeFaf = Crossing Altitudelast waypoint

else

AltitudeFaf = Crossing Altitudelast waypoint +
 (DTGFafWpt * NmiToFeet) * tangent(Crossing Anglelast waypoint)

Calculate the ground speed at the runway.

InterpolateWindWptAltitude(Wind Profilelast waypoint, Altitudelast waypoint, Ws, Wd, Td)

GsRny = ComputeGndSpeedUsingTrack (Crossing CASlast waypoint, GndTracklast waypoint,
 Altitudelast waypoint, Ws, Wd, Td)

Calculate the ground speed at the FAF.

InterpolateWindWptAltitude(Wind ProfileFafWpt, AltitudeFafWpt, Ws, Wd, Td)

GsFaf = ComputeGndSpeedUsingTrack (Crossing CASFafWpt,GndTrackFafWpt,
 AltitudeFafWpt,Ws,Wd,Td)

Calculate the distance from the FAF toward the runway where the final speed will be
reached.

x2 = (GsFaf + GsRny) / 2 * t

Calculate the distance from the runway.

dtg = DTGFafWpt - x2

Now find this distance in the TCP's.

TmpWpt = index number of the last waypoint

42

while ((DTGTmpWpt < dtg) and (TmpWpt > index number of the first waypoint))

TmpWpt = TmpWpt - 1

Now find the next downstream input waypoint.

while ((WptTypeTmpWpt ≠ input waypoint) and
 (TmpWpt < index number of the last waypoint))

TmpWpt = TmpWpt + 1

GndTrk2 = GndTrackTmpWpt

Using the just computed estimates, recalculate the DTG.

if (Crossing Anglelast waypoint ≤ 0) Delta Z = 0

else Delta Z = (x2 * NmiToFeet) * tangent(Crossing Anglelast waypoint)

Altitude2 = AltitudeFaf - Delta Z

Find the wind value between the two points.

InterpolateWindWptAltitude(Wind ProfileFafWpt, Altitude2, Spd0, Dir0, TDev0)

InterpolateWindWptAltitude(Wind ProfileTmpWpt, Altitude2, Spd1, Dir1, TDev1)

if (dtg > 0) InterpolateWindAtRange(dtg, DTGFafWpt, Spd0, Dir0, TDev0,
 0, Spd1, Dir1, TDev1, WindSpd, WindDir, TempDev)

else

WindSpd = Spd1

WindDir = Dir1

TempDev = TDev1

Calculate the ground speed at the deceleration point.

DecelGs = ComputeGndSpeedUsingTrack(CFAS, GndTrk2, Altitude2, WindSpd,
 WindDir, TempDev)

Calculate the average ground speed.

AvgGs = (GsFaf + DecelGs) / 2

Calculate the distance for the speed change.

x2 = AvgGs * t

43

Calculate the distance from the runway for this speed point.

dtg = DTGFafWpt - x2

end of if (Final Deceleration Option = AT FAF)

else

Calculate the data for the stabilized altitude option.

StableAlt = Crossing Altitudelast waypoint + Stable Altitude

dtg = (Stable Altitude / NmiToFeet) / tangent(Crossing Altitudelast waypoint)

Find the waypoint prior to the stable altitude.

TmpWpt = index number of the last waypoint

while ((DTGTmpWpt < dtg) and (TmpWpt > index number of the first waypoint))

TmpWpt = TmpWpt - 1

Save the ground track at this point.

GndTrk2 = Ground TrackTmpWpt

Calculate the wind data at the two positions.

InterpolateWindWptAltitude(Wind ProfileFAFWpt, StableAlt, Spd0, Dir0, TDev0)

InterpolateWindWptAltitude(Wind ProfileTmpWpt, StableAlt, Spd1, Dir1, TDev1)

Interpolate the winds between the two waypoints.

if (dtg > 0) InterpolateWindAtRange(dtg, DTGFafWpt, Spd0, Dir0, TDev0,
 0, Spd1, Dir1, TDev1, WindSpd, WindDir, TempDev)

else

WindSpd = Spd1

WindDir = Dir1

TempDev = TDev1

Calculate the ground speed at the deceleration point.

DecelGs = ComputeGndSpeedUsingTrack(CFAS, GndTrk2, StableAlt, WindSpd,
 WindDir, TempDev)

end of else { Calculate the data for the stabilized altitude option }

44

Add the appropriate speed TCP if its position is between the FAF and the runway and the CFAS
is slower than the speed at the FAF.

if ((dtg > 0) and (dtg ≤ DTGFafWpt) and (Crossing CASFafWpt > CFAS)) then

Save the original ground track value at this distance.

GndTrk = GetTrajGndTrk(dtg)

Find the position in the TCP list to insert this waypoint.

i = index number of the last waypoint

while ((DTGi < dtg) and (i > index number of the first waypoint)) i = i - 1

Define the correct insertion point.

i = i + 1

InsertWaypoint(i)

WptTypei = VTCP

if (VSegTypei = no type) VSegTypei = FINAL SPEED

TurnTypei = no turn

Crossing Machi = 0.

Crossing CASi = Crossing CASlast waypoint

Crossing Ratei = Crossing Ratelast waypoint

DTGi = dtg

Calculate the altitude at this point.

if ((DTGi-1 - DTGi+1) ≤ 0) x2 = 0

else x2 = (DTGi - DTGi+1) / (DTGi - 1 - DTGi + 1)

Altitudei = x2 * Altitudei-1 + (1 - x2) * Altitudei + 1

Mach Segmenti = false

Crossing Anglei = Crossing Anglei + 1

Ground Tracki = GndTrk

Ground Speedi = DecelGs

45

Machi = 0

CASi = Crossing CASi

Add the wind data at this distance.

Compute and add the wind data at the new TCP's DTG.

GenerateWptWindProfile(DTGi, TCPi)

end of adding the TCP

else mark this as an error condition

end of if ((Final Deceleration Option = AT FAF) or (Final Deceleration Option = STABLE))

Add Waypoint at 6.25 nmi
The Add Waypoint at 6.25 nmi function generates a special waypoint at 6.25 nmi before the landing

threshold of the runway. This function is invoked if the input variable AddMopsRWY625 is true. This
capability to support this special waypoint at 6.25 nmi before the threshold, along with associated
crossing altitude and speed conditions, is a requirement of the RTCA Minimum Operational Performance
Standards (MOPS) for Flight-deck Interval Management (FIM) (ref. 23). This function may only be
invoked if the last waypoint is the runway threshold and the input crossing speed is a valid CAS value.

if (AddMopsRWY625 and (Crossing CASlast waypoint > 0)) then

error = false

LastNum = index number of the last waypoint

Determine where the 6.25 nmi needs to be placed in the TCP list.

found = false

i1 = LastNum

while ((found = false) and (i1 > index number of the first waypoint))

if ((WptTypei - 1 = input waypoint) and (DTGi - 1 > 6.25 nmi)) found = true

i1 = i1 - 1

if (found = false) error = true

Find the upstream waypoint with a speed constraint.

j = i1

found2 = false

while ((found2 = false) and (j ≥ index number of the first waypoint))

46

if ((WptTypej = input waypoint) and (Crossing CASj > 0)) found2 = true

else j = j - 1

if (found2 = false) error = true

spd = Crossing CASj

The MOPS requires that the crossing speed cannot be faster than 170 kt.

if (spd > 170 kt) spd = 170 kt

Find the downstream CAS rate.

j = i1 + 1

found2 = false

while ((found2 = false) and (j ≤ index number of the last waypoint))

if ((WptTypej = input waypoint) and (Crossing CASj > 0.0)) found2 = true

else j = j + 1

if (found2 = false) error = true

spdrate = Crossing Ratej

Set the rate to a minimum of 0.75 kt / sec.

if (spdrate < 0.75 kt /sec) spdrate = 0.75 kt / sec

Find the downstream descent data.

j = i1 + 1

found2 = false

while ((found2 = false) and (j < index number of the last waypoint))

if ((WptTypej = input waypoint) and (Crossing Altitudej > 0)) found2 = true

else j = j + 1

if (found2 = false) error = true

This point needs to be crossed at an altitude of at least 2000 ft above the runway altitude.

alt = Crossing Altitudelast waypoint + 2000 ft

if (alt ≤ Crossing Altitudej) then

47

alt = Crossing Altitudej

angle = Crossing Anglej

else

angle = Crossing Anglej

if (angle < Crossing Anglelast waypoint) angle = Crossing Anglelast waypoint

Check the actual calculated altitude.

z = alt - Crossing Altitudej

if (z > 0) then

d = 6.25 nmi - DTGj

if (d > 0) then

a = arctangent(z, NmiToFeet * d)

if (a > angle) angle = a

Find the waypoint after this in the input waypoint data.

found2 = false

j1 = index number of the last waypoint

while ((found = false) and (j1 ≥ index number of the first waypoint))

if (Idj1 = Idi1) found2 = true

else j1 = j1 - 1

if (found = false) error = true

j0 = j1

Find the waypoint after this point.

found2 = false

i0 = index number of the last waypoint

while ((found2 = false) and (i0 ≥ index number of the first waypoint))

if ((WptTypei0 = input waypoint) and (Idj0 = Idi0)) found2 = true

else i0 = i0 - 1

48

if (found2 = false) error = true

If there are not errors, insert the 6.25 nmi point.

if (error= false)

GndTrk = GetTrajGndTrk(6.25 nmi)

Find the position to insert this waypoint.

i = index number of the last waypoint

while ((DTGi < 6.25 nmi) and (i > index number of the first waypoint)) i = i - 1

The correct insertion point is the next downstream point.

i = i + 1

InsertWaypoint(i)

WptTypei = VTCP

VSegTypei = RUNWAY625

TurnTypei = no turn

Crossing Machi = 0

Crossing CASi = spd

Crossing Ratei = spdrate

DTGi = 6.25 nmi

Altitudei = alt

Crossing Altitudei = alt

Mach Segmenti = false

Crossing Anglei = angle

Ground Tracki = GndTrk

Machi = 0

CASi = Crossing CASi

Add the wind data at this distance.

GenerateWptWindProfile(DTGi, TCPi)

49

InterpolateWindWptAltitude(Wind Profilei, Crossing Altitudei, WindSpd, WindDir, TempDev)

Ground Speedi = ComputeGndSpeedUsingTrack(Crossing CASi, Ground Tracki,
 Crossing Altitudei, WindSpd, WindDir, TempDev)

If there is a programmed deceleration at the original FAF and the FAF is farther from the
runway than 6.25 nmi, remove the previously computed final deceleration point.

if ((Final Deceleration Option = AT FAF) or (Final Deceleration Option = STABLE)) then

Find the index number for the FAF. Initialize the index to an invalid number, -1.

FafWptNum = -1

Is this the special case with a named FAF, NamedFaf, in the input?

if (NamedFaf) then

Find this waypoint by name.

found = false

k = index number of the last waypoint

while ((found = false) and (k > index number of the first waypoint))

if (NamedFaf = Idk) found = true

else k = k - 1

if (found) FafWptNum = k

else

FafWptNum = index number of the last waypoint

while ((FafWptNum > index number of the first waypoint) and
 (WptTypeFafWptNum ≠ input waypoint))

found2 = false

i = index number of the last waypoint

while ((found2 = false) and (FafWptNum > index number of the first waypoint) and
 (i > index number of the first waypoint))

VSegTypei = FINAL SPEED) found2 = true

else i = i - 1

if (found and (DTGFafWptNum > 6.25 nmi)) RemoveWaypoint(i)

50

where the RemoveWaypoint function simply deletes the TCP at the index i.

end of if (error= false)

else mark this as an error condition

Compute TCP Speeds
The Compute TCP Speeds function is similar to Compute TCP Altitudes in its design. Beginning with

the last waypoint, this function computes the Mach or CAS at each previous TCP and inserts any
additional speed TCPs that may be required to denote a change in the speed profile. The function uses the
current speed constraint, searches backward for the previous constraint, and then computes the distance
required to meet this previous constraint. The speeds for all of the TCPs within this distance are computed
and added to the data for the TCPs. If the along-path distance to meet the previous constraint is not at a
TCP, a new speed VTCP is inserted at this distance. This function invokes two secondary functions,
described in the subsequent text, with the invocation dependent on the constraint speed, whether it is a
Mach or a CAS value. This function is performed in the following steps:

Set the current constraint index number, cc, equal to the index number of the last waypoint,

cc = index number of the last waypoint

The speed of the first waypoint is set to its crossing speed.

if (Crossing Machfirst waypoint > 0)

Mach first waypoint = Crossing Machfirst waypoint

CAS first waypoint = MachToCas(Mach first waypoint, Altitude first waypoint)

else

CAS first waypoint = Crossing CASfirst waypoint

Mach first waypoint = CasToMach(CAS first waypoint, Altitude first waypoint)

A flag signifying that Mach segment computation has begun is initially set to false,

Doing Mach = false

Check for special case where there are no CAS segments.

if ((Crossing CAScc = 0) and (Crossing Machcc > 0.0)) then

CAScc = MachToCas(Crossing Machcc, Crossing Altitudecc)

Machcc = Crossing Machcc

DoingMach = true

else CAScc = Crossing CAScc

while (cc > index number of the first waypoint)

51

Set the Mach flag if the current TCP is the Mach-to-CAS transition point.

if (TCPcc = Mach Transition CAS) Doing Mach = true

if (Doing Mach) ComputeTcpMach(cc)

else ComputeTcpCas(cc)

end of while cc > index number of the first waypoint

Compute Secondary Speeds
The Compute Secondary Speeds function adds the Mach values to CAS TCPs, the CAS values to Mach

TCPs, and the ground speed values to all TCPs. This function is performed in the following steps:

Doing Mach = false

Working backwards from the runway, compute the relevant speeds.

for (i = index number of the last waypoint; i ≥ index number of the first waypoint; i = i - 1)

Set the flag if the current TCP is the Mach-to-CAS transition point.

if (TCPi = Mach Transition CAS) Doing Mach = true

if (Doing Mach) Casi = MachToCas(Machi, Altitudei)

else Machi = CasToMach(Casi, Altitudei)

Compute the ground track.

if (i = index number of the first waypoint) track = Ground Tracki

else if (WptInTurn(i) or (TCPi = turn-exit)) track = Ground Tracki

else track = Ground Tracki-1

Compute the ground speed. This also requires the computation of the wind at this point.

InterpolateWindWptAltitude(Wind Profilei, Altitudei,Wind Speed, Wind Direction,
 Temperature Deviation)

Ground Speedi = ComputeGndSpeedUsingTrack (Casi, track, Altitudei, Wind Speed,
 Wind Direction, Temperature Deviation)

end of for (i = index number of the last waypoint; i ≥ index number of the first waypoint; i = i - 1)

Compute Turn Data
The Compute Turn Data function computes the turn data for each turn waypoint and modifies the

associated waypoint's turn data sub-record. This function performs as follows:

KtsToFps = 1.69

52

Nominal Bank Angle = 22

index = index number of the first waypoint + 1

while (index < index number of the last waypoint)

Find the next input waypoint with a turn.

while ((index < index number of the last waypoint) and ((TCPindex ≠ input waypoint) or
(not WptInTurn(index)))) index = index + 1

If there are no errors and there is a turn of more than 3-degrees, compute the turn data.

if (index < index number of the last waypoint)

Find the start of the turn.

i = index - 1

while (TCPi ≠ turn-entry) i = i - 1

start = i

The following are all approximations and are based on a general, constant radius turn.

The start of turn to the midpoint data is as follows, noting that the ground speeds for all points
must be valid at this point.

The overall distance d for this part of the turn is,

d = DTGstart - DTGindex

The special case with 0 distance between the points is,

if (d ≤ 0) AvgGsFirstHalf = (Ground Speedstart + Ground Speedindex) / 2

else

The overall average ground speed is computed as follows, noting that it is the sum of
segment distance / overall distance * average segment ground speed.

AvgGsFirstHalf = 0

for (j = start; j ≤ (index - 1); j = j + 1)

dx = DTGj - DTGj+1

AvgGsFirstHalf = AvgGsFirstHalf + (dx / d)
* (Ground Speedj + Ground Speedj+1) / 2

Now, find the end of the turn.

53

i = index + 1

while (TCPi ≠ turn-exit) i = i + 1

end = i

Now, find the midpoint to the end of the turn.

The overall distance for this part of the turn is,

d = DTGindex - DTGend

Test for the special case, 0 distance between the points.

if (d ≤ 0)

AvgGsLastHalf = (Ground Speedindex + Ground Speedend) / 2

else

Compute the overall average ground speed noting that it is the sum of the segment
distances / overall distance * average segment ground speed.

AvgGsLastHalf = 0

for (j = index; j ≤ (end - 1); j = j+ 1)

dx =DTGj - DTGj+1

AvgGsLastHalf = AvgGsLastHalf + (dx / d) *
(Ground Speedj + Ground Speedj+1) / 2

end of for (j = index; j ≤ (end - 1); j = j + 1)

end of else if (d ≤ 0)

full turn = DeltaAngle(Ground Trackstart, Ground Trackend)

half turn = full turn / 2

Compute the outputs from the average ground speed values.

Average Ground Speed = (AvgGsFirstHalf + AvgGsLastHalf) / 2

Save the ground speed data in the turn data for this waypoint.

Turn Data Average Ground Speedindex = Average Ground Speed

Compute the turn radius and associated data. This set of calculations is not performed if the
waypoint is a special, RF center-of-turn turn waypoint.

if (TurnTypei ≠ rf-turn-center)

54

The general equation is turn rate = c tan(bank angle) / v. If the bank angle is a constant,
turn rate = c0 / v. The Nominal Bank Angle = 22 degrees.

c0 = 57.3 * 32.2 / KtsToFps * tangent(Nominal Bank Angle)

Test for a negative ground speed.

if (Average Ground Speed ≤ 0)

Turn Data Turn Timeindex = 0

Turn Data Turn Radiusindex = 0

else

w = c0 / Average Ground Speed

The time to make the turn is,

Turn Data Turn Timeindex = |full turn| / w

The turn radius is,

Turn Data Turn Radiusindex =
 (57.3 * KtsToFps * Average Ground Speed) / (NmiToFeet * w)

The along-path distance for the turn is,

Turn Data Path Distanceindex = |full turn| * Turn Data Turn Radiusindex / 57.3

else

These are the data for an RF turn. The along-path distance for the turn is,

Turn Data Path Distanceindex = |full turn| * Turn Data Turn Radiusindex / 57.3

Calculate the time to make the turn.

Test for a negative ground speed.

if (Average Ground Speed ≤ 0) Turn Data Turn Timeindex = = 0

else

Turn Data Turn Timeindex =

 Turn Data Path Distanceindex / Average Ground Speed * 3600

Save the turn data for the first half of the turn, denoted by the "1" in the variable name.

Turn Data Cas1index = CASstart

55

Turn Data Average Ground Speed1index = AvgGsFirstHalf

Turn Data Track1index = Ground Trackstart

The Straight Distance values are the distances from the turn-entry TCP to the waypoint and
from the waypoint to the turn-exit TCP. See the example in figure 6.

Turn Data Straight Distance1index = Turn Data Turn Radius index * tangent(|half turn|)

Figure 6. Turn distances for waypointi.

The Path Distance values are the along-the-path distances from the turn-entry TCP to a point
one-half way along the turn and from this point to the turn-exit TCP. See the example in
figure 6.

Turn Data Path Distance1index = |half turn| * Turn Data Turn Radiusindex / 57.3

Compute the midpoint waypoint data. This set of calculations is not performed if the
waypoint is a special, RF center-of-turn waypoint.

if (TurnTypei ≠ rf-turn-center)

Test for a negative ground speed.

if (AvgGsFirstHalf ≤ 0) Turn Data Turn Time1index = 0

else

w = c0 / AvgGsFirstHalf

Turn Data Turn Time1index = |half turn| / w

else

These are the data for an RF turn.

Turn Data Turn Time1index = Turn Data Path Distance1index / AvgGsFirstHalf * 3600

The data for the midpoint to the end of the turn, denoted by the "2" in the variable name, are
as follows:

56

Turn Data Cas2index = CASend

Turn Data Average Ground Speed2index = AvgGsLastHalf

Turn Data Track2index = Ground Trackend

The distances for the second half of the turn are the same as for the first, but their calculations
are recomputed here for clarity.

Turn Data Straight Distance2index = Turn Data Turn Radius index * tangent(|half turn|)

Turn Data Path Distance2index = |half turn| * Turn Data Turn Radiusindex / 57.3

Compute the data for the last half of the turn. Again, this set of calculations is not performed
if the waypoint is a special, RF center-of-turn waypoint.

if (TurnTypei ≠ rf-turn-center)

Test for a negative ground speed.

if (AvgGsFirstHalf ≤ 0) Turn Data Turn Time2index = 0

else

w = c0 / AvgGsLastHalf

Turn Data Turn Time2index = |half turn| / w

else

These are the data for an RF turn.

Turn Data Turn Time2index = Turn Data Path Distance2index / AvgGsLastHalf * 3600

The DTG values are as follows:

DTGstart = DTGindex + Turn Data Path Distance1index

DTGend = DTGindex - Turn Data Path Distance2index

Since the turn waypoints have been moved, the wind data need to be updated for the new
locations.

if (TCPstart ≠ input waypoint) GenerateWptWindProfile(DTGstart, TCPstart)

if (TCPend ≠ input waypoint) GenerateWptWindProfile(DTGend, TCPend)

end of if (index < index number of the last waypoint)

index = index + 1

57

end of while (index < index number of the last waypoint)

Test for Altitude / CAS Restriction Requirement
The Test for Altitude / CAS Restriction Requirement function determines if the addition of an altitude /

CAS restriction point is required. This is the (U.S.) point where the trajectory transitions through 10,000
ft and a 250 kt restriction is required. This function determines the value of the Need10KRestriction flag.
The function can only be called after an initial, preliminary trajectory has been generated. The restriction
values are Descent Crossing Altitude and Descent Crossing CAS.

Need10KRestriction = false

if ((Descent Crossing Altitude > 0) and (Descent Crossing CAS > 0)) ok = true

else ok = false

If we don't start above 10,000ft, skip this whole routine.

if (ok and (Altitudefirst waypoint > ConvertPressureToIndicatedAltitude(Descent Crossing Altitude,
barometric settingfirst waypoint)) then

Find the first point below Descent Crossing Altitude

fini = false

i = 0

while ((i <index number of the last waypoint) and (fini = false))

Crossing Altitude = ConvertPressureToIndicatedAltitude(Descent Crossing Altitude,
 barometric settingi)

if (Altitudei < Crossing Altitude) then

Find the distance to this altitude.

x = Altitudei-1 - Altitudei

if (x ≤ 0) ratio = 0

else ratio = (Crossing Altitude - Altitudei) / x

s = ratio * (CASi-1 - CASi) + CASi

if (s > (Descent Crossing Cas + 2)) Need10KRestriction = true

 fini = true

i = i + 1

Delete VTCPs
The Delete VTCPs function deletes the altitude, speed, and Mach-to-CAS TCPs. The remaining TCPs

will only consist of input waypoints, turn-entry, and turn-exit TCPS. This function also removes any flags

58

that associate any remaining TCPs with a speed or altitude change, e.g., a waypoint marked as the 10,000
ft, 250 kt restriction.

Update DTG Data
The Update DTG Data function is performed after the turn data have been updated and the VTCPs

have been deleted. Only input, turn-entry, and turn-exit TCPs should be in the list at this time. If the input
test flag, TestOnly, is true, then only the testing portions of this function are used.

if (TestOnly = false) DTGfirst waypoint = 0

i = index number of the last waypoint

while (i > index number of the first waypoint)

Determine if there is a turn at either end and adjust accordingly.

if (WptInTurn(i))

if (TestOnly = false) DTGi-1 = DTGi + Turn Data Path Distance1i

The following is the difference between going directly from the waypoint to going along the
curved path.

PriorDistanceOffset = Turn Data Straight Distance1i - Turn Data Path Distance1i

else PriorDistanceOffset = 0

Find the next input waypoint.

n = i - 1

while (TCPn ≠ input waypoint) n = n - 1

if (WptInTurn(n))

The following is the difference between going directly from the waypoint to going along the
curved path.

DistanceOffset = Turn Data Straight Distance2n - TurnData.PathDistance2n

The DTG to the input waypoint is then:

if (TestOnly = false) DTGn = (Center to Center Distancei - PriorDistanceOffset -
 DistanceOffset) + DTGi

If the DistanceOffset is greater than Center to Center Distancei, then the turn is too big.

if (DistanceOffset > Center to Center Distancei) mark this as an error condition

The turn-exit DTG is then,

59

if (TestOnly = false) DTGn+1 = DTGn - Turn Data Path Distance2n

else if (TestOnly = false)

The next waypoint is not in a turn.

DTGn = Center to Center Distancei - PriorDistanceOffset + DTGi

i = n

end of while (i > 0)

Check Turn Validity
The Check Turn Validity function is performed after the turn data have been updated and the VTCPs

have been deleted. Only input, turn-entry, and turn-exit TCPs should be in the list at this time. The
function simple checks that there are no turns within turns by examining the DTG values.

for (i = index number of the first waypoint; i < index number of the last waypoint; i = i + 1)

if (DTGi < DTGi+1) mark this as an error condition

Restore the Crossing Angles
The Restore the Crossing Angles function simply replaces the current value for each waypoint's

crossing angle with the value that was saved in the function Save Selected Input Data.

Recover the Initial Mach Segments
This function, Recover the Initial Mach Segments, attempts to recover the Mach portion of the

trajectory if the initial segments should be Mach but have been internally converted to CAS in the
function Meet Cruise CAS Waypoint Restriction. This function uses the Mach value that was saved at the
start of this program from the first waypoint of the original route. This saved Mach value, First Waypoint
Mach, is compared to the Mach equivalent value of the CAS at the initial waypoints and if these Mach
values are the same, these waypoints are marked as Mach segments instead of CAS segments.

Only perform this function if the calculated trajectory does not start with a Mach segment but the
original route does start with a Mach value.

if ((Mach Segmentfirst waypoint = false) and (First Waypoint Mach ≠ 0))

Mach = CasToMach(Crossing CASfirst waypoint, Altitude first waypoint)

Determine if this value is close to the original Mach or if there is a different but valid cruise
Mach.

DoTest = false

if (Mach ≈ First Waypoint Mach) DoTest = true

else if ((Mach >= 0.80 Mach) and (Altitudefirst waypoint >= 29000 ft)) then

Find the TOD, the speed needs to be the same as the starting speed.

60

fini = false

i = index number of the first waypoint + 1

while ((i < (index number of the last waypoint - 1)) and (fini = false))

DoTest = true

if (Altitudei ≠ Altitudefirst waypoint) fini = true

else if (CASi ≠ CASfirst waypoint) then

fini = true

DoTest = false

i = i + 1

end of else if ((Mach >= 0.80 Mach)...

if (DoTest)

fini = false

i = index number of the last waypoint

First Cas = Crossing CASfirst waypoint

If there is no Mach transition altitude set, set the transition values.

if (Mach Transition Altitude = 0)

Mach Descent Mach = First Waypoint Mach

Mach Transition Cas = First Cas

Mach Transition Altitude = Altitudefirst waypoint

while ((i < (index number of the last waypoint - 1)) and (fini = false))

Test that the CAS computed for the waypoint is the same as the First Cas, that except for
the first waypoint that there is not speed crossing condition at the waypoint, and that the
altitude computed for the waypoint is the same as the altitude for the first waypoint.

if ((Casi = First Cas) and ((i = index number of the last waypoint) or
 ((Crossing Machi = 0) and (Crossing CASi = 0))) and
 (Altitudei = Crossing Altitudefirst waypoint))

If the previous conditions are turn, set this waypoint as a Mach segment.

Mach Segmenti = true

61

Change the speed crossing values for the first waypoint.

if (Crossing CASi > 0)

Crossing CASi = 0

Crossing Machi = First Waypoint Mach

end of if ((Casi = First Cas)...)

else fini = true

i = i + 1

Insert CAS Descent VTCPs
This function inserts vertical TCPs between constant CAS descent waypoints to improve the TAS

estimation when using the data provided by this algorithm. This updating occurs at 3,000 ft intervals.

Update Altitude = 3000

Find the first CAS point.

j = 0

while ((Mach Segmenti = true) and (j < index number of the last waypoint)) j = j + 1

for (i = j; i < (index number of the last waypoint - 1); i = i + 1)

DeltaZ = Altitudei - Altitudei + 1

Update at 3000 ft intervals but skip the update if the waypoint is within 500 ft of the test altitude.

if ((DeltaZ ≥ (Update Altitude + 500)) and (Casi ≈ Casi + 1))

z = Altitudei - Update Altitude

dx = DTGi - DTGi + 1

a = arctangent2 (DeltaZ, NmiToFeet * dx)

d = DTGi - Update Altitude / tan(a) / NmiToFeet

Compute the ground track at distance d along the trajectory and save it as Saved Ground
Track.

Saved Ground Track = GetTrajGndTrk(d)

k = i + 1

Insert a new VTCP at location k in the TCP list. The VTCP is inserted between TCPk-1 and
TCPk from the original list. The function InsertWaypoint should be appropriate for the actual
data structure implementation of this function.

62

InsertWaypoint(k)

Update the waypoint-type data in the new waypoint.

WptTypek = VTCP

VSegTypek = TAS adjustment

TurnTypek = no turn

Update the crossing data in the new waypoint.

Crossing Machk = 0

Crossing CASk = 0

Crossing Ratek = 0

CASk = CASk+1

DTGk = d

Altitudek = z

Machk = CasToMach(CASk, Altitudek)

Mach Segmentk = false

Crossing Anglek = Crossing Anglek+1

Ground Trackk = Saved Ground Track

Compute and add the wind data at this waypoint.

GenerateWptWindProfile(DTGk, TCPk)

Compute the wind at the waypoint altitude and then waypoint's ground speed.

InterpolateWindWptAltitude(Wind Profilek, Altitudek, Ws, Wd, Td)

Ground Speedk = ComputeGndSpeedUsingTrack(CASk, Ground Trackk-1, Altitudek, Ws, Wd,
 Td)

Compute TCP Times
The function Compute TCP Times calculates the time to each TCP. The calculations begin at the

runway (the last waypoint), working backwards, and compute the TTG to each TCP.

TTGlast waypoint = 0

for (i = index number of the last waypoint; i > index number of the first waypoint; i = i - 1)

63

Average Ground Speed = (Ground Speedi-1+ Ground Speedi) / 2

x = DTGi-1 - DTGi

Test for an error condition where the distance is less than 0. This error only occurs if the segment
ends overlap.

if (x < 0)

Find the previous input waypoint in case it is needed in a later test. Also determine if this
previous waypoint is an RF turn point.

PreviousIsRf = false

fini = false

j = i - 1

while (fini = false)

if (j < index number of the first waypoint) fini = true

else if ((WptTypej = input waypoint) and (TurnTypej = rf-turn-center)) then

PreviousIsRf = true

fini = true

else if (WptTypej = input waypoint) fini = true

j = j - 1

end of while (fini = false)

If the distance is close to 0, e.g., within 500 ft for a normal segment pair, set the distance to
the previous distance value and ignore the error.

if (x ≥ (-500 ft / NmiToFeet))

DTGi = DTGi-1

x = 0

Allow a larger margin of error of 1500 ft for the beginning of an RF turn.

else if ((x ≥ -1500 ft / NmiToFeet) and (TurnTypei = turn-entry) and
 (Center Of Turn Latitudei ≠ 0))

DTGi = DTGi-1

x = 0

64

Allow a larger margin of error of 1500 ft if the end of the previous segment is the end of an
RF turn and it overlaps the start of another turn.

else if ((x ≥ -1500 ft / NmiToFeet) and (TurnTypei = turn-entry) and
 (i > index number of the first waypoint) and (TurnTypei-1 = turn-exit) and
 PreviousIsRf) then

Overwrite the previous end of turn data with the subsequent start of turn data.

DTGi-1 = DTGi

Altitudei-1 = Altitudei

CASi-1= CASi

Ground Speedi-1 = Ground Speedi

Ground Tracki-1 = Ground Tracki

Machi-1 = Machi

Mach Segmenti-1 = Mach Segmenti

x = 0

else mark this as an error condition

Delta Time = 3600 * x / Average Ground Speed

TTGi-1 = TTGi + Delta Time

Compute TCP Latitude and Longitude Data
With the exception of the input waypoints, the Compute TCP Latitude and Longitude Data function

computes the latitude and longitude data for all of the TCPs.

In Turn = false

Last Base = index number of the first waypoint

Next Input = index number of the first waypoint

Turn Index = index number of the first waypoint

Turn is Clockwise = true

Turn Adjustment = 0

Base Latitude = LatitudeLast Base

Base Longitude = LongitudeLast Base

65

for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

if (TCPi = turn-entry)

Turn Adjustment = 0

InTurn = True

Find the major waypoint for this turn.

Next Input = i + 1

while ((TCPNext Input ≠ input waypoint) and (Next Input ≤ index number of the last waypoint))
Next Input = Next Input + 1

Turn Index = Next Input

a = DeltaAngle(Ground Tracki, Ground TrackNext Input)

x = Turn Data Turn RadiusTurn Index / cosine(a)

if (a > 0) Turn Clockwise =true

else Turn Clockwise = false

if (Turn Clockwise) a1 = Ground TrackTurn Index + 90

else a1 = Ground TrackTurn Index - 90

Now compute the relative latitude and longitude values. The function RelativeLatLon is
described in a subsequent section.

RelativeLatLong(LatitudeTurn Index, LongitudeTurn Index, a1, x), returning Center Latitude and
Center Longitude

end of if (TCPi = turn-entry)

if (In Turn)

Turn Adjustment = 0

if (Turn Clockwise) a1 = Ground Tracki - 90

else a1 = Ground Tracki + 90

if (WptTypei = input waypoint)

Turn Data Center Latitudei = Center Latitude

Turn Data Center Longitudei = Center Longitude

RelativeLatLong(Center Latitude, Center Longitude, a1, Turn Data Turn RadiusTurn Index),

66

returning Turn Data Latitudei and Turn Data Longitudei

end of if (WptTypei = input waypoint)

else RelativeLatLon(Center Latitude, Center Longitude, a1, Turn Data Turn RadiusNext Input),
returning Latitudei and Longitudei

if (TCPi = turn-exit)

Turn Adjustment = Turn Data Straight Distance2Turn Index -
Turn Data Path Distance2Turn Index

In Turn = false

Last Base = Next Input

Base Latitude = LatitudeLast Base

Base Longitude = LongitudeLast Base

end of if (In Turn)

else

if (WptTypei = input waypoint)

Turn Adjustment = 0

Last Base = i

Base Latitude = LatitudeLast Base

Base Longitude = LongitudeLast Base

else

RelativeLatLong(Base Latitude, Base Longitude, Ground Tracki-1, DTGLast Base - DTGi +
Turn Adjustment), returning Latitudei and Longitudei

end of for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

Description of Secondary Functions
The secondary functions are listed in alphabetical order. Note that standard aeronautical functions, such

as CAS to Mach conversions, CasToMach, are not expanded in this document but may be found
numerous references, e.g., reference 24. It may also be of interest to include atmospheric temperature or
temperature deviation in the wind data input and calculate the temperature at the TCP crossing altitudes to
improve the calculation of the various speed terms.

67

BodDecelerationDistance
The function BodDecelerationDistance estimates the distance required for the special case of a
deceleration to a CAS restricted waypoint from the Mach-to-CAS transition. This function is invoked
from HandleDescentAccelDecel, which passes in the index number for the bottom-of-descent (TOD)
waypoint, BodIndex, the Mach transition to CAS altitude, Mach Transition Altitude, and the CAS at the
Mach transition to CAS, TransitionCas. The function returns the distance from the index point of the
deceleration, Distance.

Estimate the distance to the new Mach value. Begin by finding the time to do the deceleration.

t = (TransitionCas - Crossing CASBodIdx) / Crossing RateBodIdx

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profile BodIdx, Altitude BodIdx, Ws, Wd, Td)

Calculate the ground track at the current point.

if (WptInTurn(BodIdx)) track = Ground TrackBodIdx-1

else track = Ground TrackBodIdx

Calculate the ground speed over this segment.

BodGs = ComputeGndSpeedUsingTrack(Crossing CASBodIdx, track, AltitudeBodIdx, Ws, Wd, Td)

DescentGs = ComputeGndSpeedUsingTrack(TransitionCas, track, Mach Transition Altitude,
Ws, Wd, Td)

Calculate the average groundspeed, AvgGS.

AvgGs = (BodGs + DescentGs) / 2

The distance estimate is AvgGs * t .

Distance = AvgGs * t / 3600

ComputeGndSpeedUsingMachAndTrack
The ComputeGndSpeedUsingMachAndTrack function computes a ground speed from track angle

(versus heading), track, Mach, Mach, altitude, Altitude, and wind data, Wind Speed, Wind Direction, and
Temperature Deviation.

CAS = MachToCas(Mach, Altitude)

Ground Speed = ComputeGndSpeedUsingTrack(CAS, track, Altitude, Wind Speed, Wind Direction,
 Temperature Deviation)

ComputeGndSpeedUsingTrack
The ComputeGndSpeedUsingTrack function computes a ground speed from track angle (versus

heading), track, CAS, CAS, altitude, Altitude, and wind data, Wind Speed, Wind Direction, and
Temperature Deviation.

68

b = DeltaAngle(track, Wind Direction)

if (CAS ≤ 0) r = 0

else r = (Wind Speed / CasToTas Conversion(CAS, Altitude)) * sine(b)

Limit the correction to something reasonable.

if (|r| > 0.8) r = 0.8 * r / |r|

heading = track + arcsine(r)

a = DeltaAngle(heading, Wind Direction)

TAS = CasToTas Conversion(CAS, Altitude, Temperature Deviation)

Ground Speed = (Wind Speed2+ TAS2 - 2 * Wind Speed * TAS * cosine(a))0.5

ComputeGndTrk
The ComputeGndTrk function computes the ground track at the along-path distance equal to distance.,

where distance must lie between TCPi-1 and TCPi+1. It is assumed that the value for Ground Tracki is
invalid. The function uses a linear interpolation based on DTGi-1 and DTGi+1, with the index value i input
into the function and where the distance, distance, must lie between these points.

d = DTG i-1 - DTG i+1

if (d ≤ 0) Ground Track = Ground Tracki-1

else

a = (1 - (distance - DT i+1) / d) * DeltaAngle(Ground Tracki-1, Ground Tracki+1)

Ground Track = Ground Tracki-1 + a

ComputeTcpCas
The index variable cc is passed into and out of the ComputeTcpCas function. Beginning with the last

waypoint, this function computes the CAS at each previous TCP and inserts any additional speed TCPs
that may be required to denote a change in the speed profile. The function uses the current speed
constraint, searches backward for the previous constraint, and then computes the distance required to meet
this previous constraint. The speeds for all of the TCPs within this distance are computed and added to the
data for the TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new speed
VTCP is inserted at this distance. Because there is no general closed form solution to compute distances
to meet the deceleration constraints, an iterative technique is used in this function. This function is
performed in the following steps:

While ((cc > index number of the first waypoint) and (TCPcc ≠ Mach Transition CAS))

Determine if the previous constraint cannot be met.

If (CAScc > Crossing CAScc)

If this is the last pass through the algorithm, mark this as an error condition

69

CAScc = Crossing CAScc

Find the prior waypoint index number pc that has a CAS constraint, e.g., a crossing CAS
(Crossing CASpc ≠ 0). This may not always be the previous (i.e., cc - 1) waypoint.

The initial condition is the previous TCP.

pc = cc - 1

while ((pc > index number of the first waypoint) and (TCPpc ≠ Mach Transition CAS)
and (Crossing CAS pc = 0)) pc = pc - 1

Save the previous crossing speed,

Prior Speed = Crossing CASpc

Save the current crossing speed (Test Speed) at TCPcc and the deceleration rate (Test Rate) noting
that the first and last waypoints always have speed constraints and except for the first waypoint,
all constrained speed points must have deceleration rates.

Test Speed = Crossing CAScc

Test Rate = Crossing Ratecc

Compute all of the TCP speeds between the current TCP and the previous crossing waypoint.

k = cc

while k > pc

If the previous speed has already been reached, set the remaining TCP speeds to the previous
speed.

if (Prior Speed ≤ Test Speed)

for (k = k - 1; k > pc; k = k - 1)

CASk = Test Speed

Machk = CasToMach(CASk, Altitudek)

Set the speeds at the last test point.

CASpc = Test Speed

if (Machpc = 0) Machpc = CasToMach(CASpc, Altitudepc)

else

Estimate the distance required to meet the crossing restriction using the winds at the
current altitude. This is a first-estimation.

70

Compute the time to do the deceleration.

t = (Prior Speed - Test Speed) / Test Rate

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profilek, Altitudek,Wind Speed1, Wind Direction1,
 Temperature Deviation1)

The ground track at the current point is,

if (WptInTurn(k)) Track = Ground Trackk

else Track = Ground Trackk-1

Current Ground Speed = ComputeGndSpeedUsingTrack(Test Speed, Track,
 Altitudek,Wind Speed1, Wind Direction1, Temperature Deviation1)

Compute the wind speed and direction at the prior altitude.

InterpolateWindWptAltitude(Wind Profilek-1, Altitudek,Wind Speed1, Wind Direction1,
 Temperature Deviation1)

The ground speed at the prior point.

Prior Ground Speed = ComputeGndSpeedUsingTrack(Prior Speed, GndTrackk-1,
 Altitudek-1, Wind Speed1, Wind Direction1, Temperature Deviation1)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2

The distance estimate, dx, is Average Ground Speed * t.

dx = Average Ground Speed * t / 3600

Recalculate the distance required to meet the speed using the previous estimate distance
dx.

Begin by computing the altitude, AltD, at distance dx.

if (Altitudek ≥ Altitudek-1) AltD = Altitudek

else

AltD = (NmiToFeet * dx) * tangent(Crossing Anglek) + Altitudek

if (AltD ≥ Altitudek-1) AltD = Altitudek

The new distance x is DTGk + dx.

Compute the winds at AltD and distance x.

71

InterpolateWindAtDistance(AltD, x, Wind Speed2, Wind Direction2,
 Temperature Deviation2)

The track angle at this point, with GetTrajGndTrk defined in this section:

Track2 = GetTrajGndTrk(x)

The ground speed at altitude AltD is then,

Prior Ground Speed = ComputeGndSpeedUsingTrack(Prior Speed, Track2, AltD,
 Wind Speed2, Wind Direction2, Temperature Deviation2)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2

dx = Average Ground Speed * t / 3600

If there is a TCP prior to dx, compute and insert its speed.

If the distance is very close to the waypoint, just set the speed.

if ((DTGk-1 < (DTGk + dx + some small value))

if (|DTGk-1 - DTGk - dx| < some small value) CASk-1 = Prior Speed

else

Compute the speed at the waypoint using v2 = v0
2 + 2ax to get v.

The headwind at the end point is,

HeadWind2 = Wind Speed2 * cosine(Wind Direction2 - Ground Trackk-1)

dx = DTGk-1 - DTGk

The value of CASk-1 is computed using function EstimateNextCas, described in
this section.

CASk-1 = EstimateNextCas(Test Speed, Current Ground Speed, false,
Prior Speed, Head Wind2, Altitudek, dx, Crossing Ratecc)

Determine if the constraint is met.

if ((k-1) = pc)

Determine the allowable crossing window, accounting for special conditions.

if (((pc + 1) < index number of the last waypoint) and
 (VSegTypepc = MACH_CAS)) CrossingWindow = 5

else CrossingWindow = 1

Was the crossing window speed met? If not, set this as an error.

72

if (|CASpc - Crossing CASpc| > CrossingWindow)
 Mark this as an error condition

Always set the crossing exactly to the crossing speed.

CASpc = Crossing CASpc

Set the test speed to the computed speed.

Test Speed = CASk-1

Back up the index counter to the next intermediate TCP.

k = k - 1

end of if ((DTGk-1 < (DTGk + dx + some small value))

else

The constraint occurs between this TCP and the previous TCP. A new VTCP needs
to be added at this point.

The along path distance d where the VTCP is to be inserted is:

d = DTGk + dx

Save the ground track value at this distance.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location k in the TCP list. The VTCP is inserted between
TCPk-1 and TCPk from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.

InsertWaypoint(k)

Update the data for the new VTCP which is now TCPk.

WptTypek = VTCP

if (VSegTypek = no type) VSegTypek = SPEED

TurnTypek = no turn

DTGk = d

The altitude at this point is computed as follows, recalling that the new waypoint is
TCPk:

if (Altitudek+1 ≥ Altitudek-1) Altitudek = Altitudek-1

73

else Altitudek = (NmiToFeet * dx) * tangent(Crossing Anglek+1) + Altitudek+1

CASk = Prior Speed

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptInTurn and ComputeGndTrk are described in subsequent
sections.

if (WptInTurn(k)) Ground Trackk = ComputeGndTrk(k, d)

else Ground Trackk = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCPk.

GenerateWptWindProfile(d, TCPk)

Test Speed = Prior Speed

Since TCPk, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc = cc + 1

end of while k > pc.

Now go to the next altitude change segment on the profile.

cc = k

end of while cc > index number of the first waypoint

ComputeTcpMach
The index variable cc is passed into and out of the ComputeTcpMach function. This function is similar

to ComputeTcpCas with the exception that the computed Mach rate will need to be recomputed with any
change of altitude. Beginning with the last Mach waypoint (the Mach waypoint that is closest to the
runway in terms of DTG), this function computes the Mach at each previous TCP and inserts any
additional speed TCPs that may be required to denote a change in the speed profile. The function uses the
current speed constraint, searches backward for the previous constraint, and then computes the distance
required to meet this previous constraint. The speeds for all of the TCPs within this distance are computed
and added to the data for the TCPs. If the along-path distance to meet the previous constraint is not at a
TCP, a new speed VTCP is inserted at this distance. Because there is no general closed form solution to
compute distances to meet the deceleration constraints, an iterative technique is used in this function. This
function is performed in the following steps:

While (cc > index number of the first waypoint)

Determine if the previous constraint cannot be met.

If (Machcc > Crossing Machcc)

If this is the last pass through the algorithm, mark this as an error condition

74

Machcc = Crossing Machcc

Find the prior waypoint index number pc that has a Mach constraint, e.g., a crossing Mach
(Crossing Machpc ≠ 0). This may not always be the previous (i.e., cc - 1) waypoint.

Initial condition is the previous TCP.

pc = cc - 1

finished = false

while ((pc > index number of the first waypoint) and (TCPpc ≠ Mach Transition CAS)
and (Crossing CAS pc = 0)) pc = pc - 1

Save the previous crossing speed,

Prior Speed = Crossing Machpc

Save the current crossing speed (Test Speed) at TCPcc and the deceleration rate (Test Rate) noting
that the first and last waypoints always have speed constraints and except for the first waypoint,
all constrained speed points must have deceleration rates.

Test Speed = Crossing Machcc

Test Rate = CasToMach(Altitudecc, Crossing Ratecc)

Compute all of the TCP speeds between the current TCP and the previous crossing waypoint.

k = cc

while k > pc

If the previous speed has already been reached, set the remaining TCP speeds to the previous
speed.

if (Prior Speed ≤ Test Speed)

for (k = k - 1; k > pc; k = k - 1)

Machk = Test Speed

CASk = MachToCas(Machk, Altitudek)

Mark TCPk as a Mach segment.

Set the speeds at the last test point.

Machpc = Test Speed

CASpc = MachToCas(Machpc, Altitudepc)

75

else

Estimate the distance required to meet the crossing restriction using the winds at the
current altitude. This is a first-estimation.

Compute the time to do the deceleration.

t = (Prior Speed - Test Speed) / Test Rate

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profilek, Altitudek,Wind Speed1, Wind Direction1,
 Temperature Deviation1)

The ground track at the current point is,

if (WptInTurn(k)) Track = Ground Trackk

else Track = Ground Trackk-1

Current Ground Speed = ComputeGndSpeedUsingMachAndTrack(Test Speed, Track,
 Altitudek, Wind Speed1, Wind Direction1, Temperature Deviation1)

Compute the wind speed and direction at the prior altitude.

InterpolateWindWptAltitude(Wind Profilek-1, Altitudek,Wind Speed1, Wind Direction1,
 Temperature Deviation1)

The ground speed at the prior altitude and speed is,

Prior Ground Speed = ComputeGndSpeedUsingMachAndTrack(Prior Speed,
 GndTrackk-1, Altitudek-1, Wind Speed1, Wind Direction1,
 Temperature Deviation1)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2

The distance estimate, dx, is Average Ground Speed * t.

dx = Average Ground Speed * t / 3600

Compute the distance required to meet the speed using the previous estimate distance dx.

Begin by computing the altitude, AltD, at distance dx.

if (Altitudek ≥ Altitudek-1) AltD = Altitudek

else

AltD = (NmiToFeet * dx) * tangent(Crossing Anglek) + Altitudek

if (AltD ≥ Altitudek-1) AltD = Altitudek

76

Compute the average Mach rate.

MRate1 = CasToMach(Crossing Ratecc, Altitudek)

MRate2 = CasToMach(Crossing Ratecc, AltD)

Test Rate = (MRate1 + MRate2) / 2

t = (Prior Speed - Test Speed) / Test Rate

The new distance x is DTGk + dx.

Compute the winds at AltD and distance x.

InterpolateWindAtDistance(AltD, x, Wind Speed2, Wind Direction2,
 Temperature Deviation2)

The track angle at this point, with GetTrajGndTrk defined in this section, is:

Track2 = GetTrajGndTrk(x)

The ground speed at altitude AltD is then,

Prior Ground Speed = ComputeGndSpeedUsingMachAndTrack(Prior Speed, Track2,
 AltD, Wind Speed2, Wind Direction2, Temperature Deviation2)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2

dx = Average Ground Speed * t / 3600

If there is a TCP prior to dx, compute and insert its speed.

If the distance is very close to the waypoint, just set the speed.

if ((DTGk-1 < (DTGk + dx + some small value))

if (|DTGk-1 - DTGk - dx| < some small value)

Machk-1 = Prior Speed

Mark TCPk as a Mach segment.

else

Compute the speed at the waypoint using v2 = v0
2 + 2ax to get v.

The headwind at the end point is,

HeadWind2 = Wind Speed2 * cosine(Wind Direction2 - Ground Trackk-1)

dx = DTGk-1 - DTGk

77

Compute the average Mach rate.

MRate1 = CasToMach(Crossing Ratecc, Altitudek)

MRate2 = CasToMach(Crossing Ratecc, Altitudek-1)

Test Rate = (MRate1 + MRate2) / 2

The value of Machk-1 is computed using function EstimateNextMach, described in
this section.

Machk-1 = EstimateNextMach(Test Speed, Current Ground Speed, Prior Speed,
 Head Wind2, Altitudek, dx, Test Rate)

Determine if the constraint is met.

if ((k-1) = pc)

Was the crossing speed met within 0.002 Mach? If not, set this as an error.

if (|Machpc - Crossing Machpc| > 0.002) Mark this as an error condition

Always set the crossing exactly to the crossing speed.

Machpc = Crossing Machpc

Set the test speed to the computed speed.

Test Speed = Machk-1

Back up the index counter to the next intermediate TCP.

k = k - 1

end of if ((DTGk-1 < (DTGk + dx + some small value))

else

The constraint occurs between this TCP and the previous TCP. A new VTCP needs
to be added at this point.

The along path distance d where the VTCP is to be inserted is:

d = DTGk + dx

Save the ground track value at this distance.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location k in the TCP list. The VTCP is inserted between
TCPk-1 and TCPk from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.

78

InsertWaypoint(k)

Update the data for the new VTCP which is now TCPk.

WptTypek = VTCP

if (VSegTypek = no type) VSegTypek = SPEED

TurnTypek = no turn

DTGk = d

The altitude at this point is computed as follows, recalling that the new waypoint is
TCPk:

if (Altitudek+1 ≥ Altitudek-1) Altitudek = Altitudek-1

else Altitudek = (NmiToFeet * dx) * tangent(Crossing Anglek+1) + Altitudek+1

Machk = Prior Speed

Mark TCPk as a Mach segment.

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptInTurn and ComputeGndTrk are described in subsequent
sections.

if (WptInTurn(k)) Ground Trackk = ComputeGndTrk(k, d)

else Ground Trackk = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCPk.

GenerateWptWindProfile(d, TCPk)

Test Speed = Prior Speed

Since TCPk, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc = cc + 1

end of while k > pc.

Now go to the next altitude change segment on the profile.

cc = k

end of while cc > index number of the first waypoint.

Make sure that the waypoints get marked correctly if there are no CAS waypoints.

79

if ((begin > index number of the first waypoint) and (cc = index number of the first waypoint)) then

for (k = index number of the first waypoint; k < begin; k++)

Mach Segmentk = true

DeltaAngle
The DeltaAngle function returns angle a, the difference between Angle1 and Angle2. The returned

value may be negative, i.e., -180 degrees ≥ DeltaAngle ≥ 180 degrees.

a = Angle2 - Angle1

Adjust "a" such that 0 ≥ a ≥ 360

if (a > 180) a = a - 360

DoTodAcceleration
The DoTodAcceleration function handles the special case when there is an acceleration to the descent

Mach at the top-of-descent. This function is invoked from Add Descent Mach Waypoint, which passes in
the index number for the TOD waypoint, TodIndex, and the Mach value at the TOD, MachAtTod. The
function will insert the Mach acceleration point into the waypoint list if a valid acceleration point can be
found.

Make an initial estimate of the distance to the new Mach value. The function
TodAccelerationDistance returns the values Valid, k, and dx.

TodAccelerationDistance(TodIdx, MachAtTod, Mach Descent Mach, Valid, k, dx)

if (Valid)

Add the VTCP for the end of the TOD acceleration.

d = DTGTodIdx - dx

The original ground track will be needed for the new TCP, so save it.

OldGroundTrack = GetTrajGndTrk(d)

Save the wind data at this distance as a temporary TCP.

GenerateWptWindProfile(d, TemporaryTcp)

The new waypoint is downstream of the current value of k.

k = k + 1

InsertWaypoint(k)

Note that Wptk is the newly created waypoint.

WptTypek = VTCP

80

TurnTypek = no turn

If the new waypoint is not already marked as a special vertical type, mark it as a top-of-descent
acceleration point.

if (VSegTypek = NONE) VSegTypek = TOD acceleration

DTGk = d

Calculate the altitude for the new TCP.

Altitudek = AltitudeTodIdx - (NmiToFeet * dx) * tangent(Crossing Angle k+1)

Machk = Mach Descent Mach

Mach Crossk = Mach Descent Mach

MachSegmentk = true

Set the Crossing Rate to the default value of 0.75.

Crossing Ratek = 0.75

Add the appropriate ground track value.

if (WptInTurn(k)) Ground Trackk = ComputeGndTrk(k, d)

else Ground Trackk = OldGroundTrack

Copy the wind data from TemporaryTcp into Wptk.

end of if (Valid)

else mark this as an error for being unable to accelerate to the descent Mach value.

EstimateNextCas
EstimateNextCas is an iterative function to estimate the CAS value, CAS, at the next TCP. Note that

there is no closed-form solution for this calculation of CAS. The input variable names described in this
function are from the calling routine and are, in order, the target CAS value, Test CAS; the ground speed
at the estimation starting point, Current Ground Speed; an estimation limiting flag, No Limit Flag; the
CAS at the estimation starting point, Prior CAS; the head wind at the estimation starting point, Head
Wind; the altitude at the estimation starting point, Altitude; the distance from the estimation starting point
to the point where the CAS is to be estimated, Distance; and the deceleration rate to be used in this
estimation, CAS Rate. Also, the input deceleration value must be greater than 0, CAS Rate > 0. The
function returns the estimated CAS value.

Guess CAS = Test CAS

Set up a condition to get at least one pass.

d = -10 * Distance

81

size = 1.01 * (Prior CAS - Guess CAS)

count = 0

if ((Distance > 0) and (CAS Rate > 0))

Iterate a solution. The counter count is used to terminate the iteration if the distance estimation
does reach a solution within 0.001 nmi.

while ((|Distance - d| > 0.001) and (count < 10))

if (Distance > d) Guess CAS = Guess CAS - size

else Guess CAS = Guess CAS + size

size = size / 2

The estimated time t to reach this speed,

t = (Guess CAS - Test CAS) / CAS Rate

The new ground speed,

Gs2 = CasToTas Conversion(guess, Altitude) - Head Wind

d = ((Current Ground Speed + Gs2) / 2) * (t / 3600)

count = count + 1

end of the while loop

Limit the computed CAS, if necessary.

if ((NoLimit = false) and (Guess CAS > Prior CAS)) Guess CAS = Prior CAS

return Guess CAS

EstimateNextMach
EstimateNextMach is an iterative function to estimate the Mach value, Mach, at the next TCP. Note

that there is no closed-form solution for this calculation. The input variable names described in this
function are from the calling routine. Also, the input deceleration value must be greater than 0, Mach
Rate > 0.

Mach = Test Speed

Set up a condition to get at least one pass.

d = -10 * dx

size = 1.01 * (Prior Speed - Test Speed)

count = 0

82

if ((dx > 0) and (Test Rate > 0))

Iterate a solution. The counter count is used to terminate the iteration if the distance estimation
does reach a solution within 0.001 nmi.

while ((|d - dx| > 0.001) and (count < 10))

if (d > dx) Mach = Mach - size

else Mach = Mach + size

size = size / 2

The estimated time t to reach this speed,

t = (Mach - Test Speed) / Test Rate

The new ground speed,

CAS = MachToCas(Mach, Altitude)

Gs2 = CasToTas Conversion(CAS, Altitude) - Head Wind2

d = ((Current Ground Speed + Gs2) / 2) * (t / 3600)

count = count + 1

end of the while loop

Limit the computed Mach, if necessary.

if (Mach > Prior Speed) Mach = Prior Speed

GenerateWptWindProfile
The function GenerateWptWindProfile is used to compute new wind profile data. This function is a

double-linear interpolation using the wind data from the two bounding input waypoints to compute the
wind profile for a new VTCP, TCPk. The interpolations are between the wind altitudes from the input data
and the ratio of the distance d at a point between TCPi-1 and TCPi and the distance between TCPi-1 and
TCPi. E.g.,

 Find the two bounding input waypoints, TCPi-1 and TCPi, between which d lies, e.g.,
TCPi-1 ≥ d ≥ TCPi.

 Using the altitudes from the wind profile of TCPi, compute and temporarily save the wind data at
these altitudes using the wind data from TCPi-1 (e.g., Wind SpeedTemporary, Altitude1).

 Compute the wind speed, wind direction, and temperature deviation for each altitude using the ratio r
of the distances. Assuming that the difference between DTGi-1 and DTGi ≠ 0, and that DTGi-1 > DTGi.

r = (DTGi-1 - d) / (DTGi-1 - DTGi)

83

TCPiTCPi-1 TCPk

Wind Datai,

Wind Datai-1,

Wind Datai-1,

(1 - r) * Wind Datai-1,
computed for 9000 ft

DTGi-1 - DTGi

DTGi-1 - d

10000 ft

8000 ft

9000 ft

r * Wind Datai

Iterate the following for each altitude in the profile.

Wind Speedk, Altitude1 = (1 - r) * Wind SpeedTemporary, Altitude1 + r * Wind Speedi, Altitude1

a = DeltaAngle(Wind DirectionTemporary, Altitude1, Wind Directioni, Altitude1)

Wind Directionk, Altitude1 = Wind Directionk, Altitude1 + (r * a)

Temperature Deviationk, Altitude1 =
 (1 - r) * Temperature DeviationTemporary, Altitude1 + r * Temperature Deviationi, Altitude1

Figure 7 is an example of the computation data for the wind computation at a 9,000 ft altitude. In this

example, TCPi-1 has wind data at 10,000 and 8,000 ft and TCPi has wind data at 9,000 ft.

Figure 7. Example of computing a single wind data altitude.

GetTrajectoryData
The GetTrajectoryData function computes the trajectory data at the along-path distance equal to d and

saves these data in a temporary TCP record. The function uses a linear interpolation based on the DTG
values of the two TCPs bounding this distance and the distance d to compute the trajectory data at this
point.

GetTrajGndTrk
The GetTrajGndTrk function computes the ground track at the along-path distance, distance.

if ((distance < 0) or (distance > DTGfirst waypoint)) Ground Track = Ground Trackfirst waypoint

else

Find where distance is on the path.

i = index number of the last waypoint

while (distance > DTGi) i = i -1

if (distance = DTGi) Ground Track = Ground Tracki

else

x = DTGi - DTGi+1

if (x ≤ 0) r = 0

84

else r = (distance - DTGi+1) / x

if (r > 1) r = 1

dx = (1 - r) * DeltaAngle(Ground Tracki, Ground Tracki+1)

Ground Track = Ground Tracki + dx

HandleDescentAccelDecel
The function HandleDescentAccelDecel is designed to handle the special case of a Mach acceleration

in the descent where the first CAS crossing restriction cannot be met. The calling program provides as
input and retains the subsequent outputs for the following variables: CasIndex, CruiseMach,
MachCasModified, DescentMach, and MachCas. The variable CasIndex is the index value in the TCP list
for the first CAS constrained waypoint. The variable CruiseMach is the last Mach crossing restriction
value prior to the first CAS segment. The variable MachCasModified is a flag returned by this function if
the DescentMach or MachCas values are changed. The variables DescentMach and MachCas are the
planned descent Mach and planned Mach-to-CAS transition CAS, respectively, and these values may be
modified by this function.

Initialize variables.

i = 0

z = 0

fini = false

MachCasModified = false

Perform up to two iterations to calculate any required Mach or CAS change in the descent.

while ((fini = false) and (i < 2))

Calculate z at the descent Mach and the Mach-to-CAS CAS.

z = FindMachCasTransitionAltitude(MachCas, DescentMach)

Determine if z is below the CAS crossing restriction.

if (z < AltitudeCasIndex)

Set the CAS to the value at this altitude, knowing the crossing restriction can't be met.

MachCas = MachToCas(DescentMach, AltitudeCasIndex)

else if (z > Altitude Crossfirst waypoint)

Set the Mach to the descent CAS at the cruise altitude.

m = CasToMach(MachCas, Altitudefirst waypoint)

85

if (m > CruiseMach) DescentMach = m

if (MachCas <Crossing CASCasIndex)

MachCas = Crossing CASCasIndex

i = i + 1

else fini = true

end of while ((fini = false) and (i < 2))

Find the TOD TCP.

fini = false

TodIndex = 0

i = index number of the first waypoint

while ((i < index number of the last waypoint) and (fini = false))

if ((Altitudei < Altitudefirst waypoint) or (Crossing CASi > 0))

if ((Altitudei ≠ Altitudefirst waypoint)) TodIndex = i - 1

else TodIndex = i

fini = true

i = i + 1

end of while ((i < index number of the last waypoint) and (fini = false))

Calculate the entire decent distance.

d = DTGTodIndex - DTGCasIndex

Estimate the distance, Daccel, to the new Mach value.

TodAccelerationDistance(TodIndex, CruiseMach, MachDescentMach, Valid, AccelIndex, Daccel)

Estimate the distance, Ddecel, to the CAS crossing speed.

BodDecelerationDistance(CasIndex, z, Mach Transition CAS, Ddecel)

 fini = false

m = DescentMach

The nominal speed values won't work, there is insufficient distance to obtain the acceleration and then
slow to the crossing speed. Iterate until a solution is found.

86

while ((fini = false) and (d < (Daccel + Ddecel)))

Iterate the solution.

Slightly change the Mach and then find the CAS.

m = m - 0.002

if (m < Cruise Mach)

m = Cruise Mach

fini = true

Estimate the distance to the new Mach value.

TodAccelerationDistance(TodIndex, Cruise Mach, m, Valid, AccelIndex, Daccel)

Find the altitude where the acceleration ends.

z = Crossing Altitudefirst waypoint - (Daccel / d) * (Crossing Altitudefirst waypoint -
 Crossing AltitudeCasIndex)

CAS = MachToCas(m, z)

Estimate the distance to the CAS crossing speed.

BodDecelerationDistance(CasIndex, z, CAS, Ddecel)

if (d ≥ (Daccel + Ddecel))

fini = true

Modify the descent Mach and CAS values.

modified = true

DescentMach = m

Add a buffer to the CAS so that subsequent Mach-to-CAS calculation won't cause an error.

MachCas = CAS + 0.1

end of if (d ≥ (Daccel + Ddecel))

InterpolateWindAtDistance
The function InterpolateWindAtDistance is used to compute the wind speed, wind direction, and

temperature deviation at an altitude, Altitude, for a specific distance, Distance, along the path. This
function is a linear interpolation using the wind data from the input waypoints that bound the along-path
distance.

87

Find the bounding input waypoints.

i0 = index number of the first waypoint

j = index number of the first waypoint

fini = false

if (Distance < 0) Distance = 0

while ((fini = false) and (j < (index number of the last waypoint - 1)))

 if ((WptTypej = input waypoint) and (DTGj ≥ Distance)) i0 = j

if (DTGj < Distance) fini = true

end of the while loop

i1 = i0 + 1

j = i1

fini = false

while ((fini = false) and (j < index number of the last waypoint))

 if ((WptTypej = input waypoint) and (DTGj ≤ Distance))

i1 = j

fini = true

end of if

j = j + 1

end of the while loop

if (i1 > index number of the last waypoint) i1 = index number of the last waypoint

if (i0 = i1) InterpolateWindWptAltitude(TCPi0, Altitude)

else

Interpolate the winds at each waypoint.

InterpolateWindWptAltitude(TCPi0, Altitude), returning Spd0, Dir0, and Td0

InterpolateWindWptAltitude(TCPi1, Altitude), returning Spd1, Dir1, and Td1

Interpolate the winds between the two waypoints.

88

r = (DTGi0 - Distance) / (DTGi0 - DTGi1)

Wind Speed = ((1 - r) * Spd0) + (r * Spd1)

a = DeltaAngle(Dir0, Dir1)

Wind Direction = Dir0 + (r * a)

Temperature Deviation = ((1 - r) * Td0) + (r * Td1)

InterpolateWindAtRange
The function InterpolateWindAtRange is used to compute the wind speed, WindSpd, wind direction,

WindDir, and temperature deviation, TempDev, at a distance along path, Distance, between two sets of
wind data sets, denoted by the subscripts 1 and 2, where DTG1 ≥ Distance ≥ DTG2. This function is a
linear interpolation using the wind data from the input.

if ((DTG1 = DTG2) or ((Distance = DTG1))then

WindSpd = WindSpd1

WindDir = WindDir1

TempDev = TempDev1

else if (Distance = DTG2) then

WindSpd = WindSpd2

WindDir = WindDir2

TempDev = TempDev2

else

Interpolate the values.

r = (DTG1 - Distance) / (DTG1 - DTG2)

WindSpd = (1 - r) * WindSpd1) + (r * WindSpd2)

a = DeltaAngle(WindDir1, WindDir2)

WindDir = WindDir1 + (r * a)

TempDev = ((1 - r) * TempDev1) + (r * TempDev2)

InterpolateWindWptAltitude
The function InterpolateWindWptAltitude is used to compute the wind speed, wind direction, and

temperature deviation at an altitude, Altitude, for a specific TCP. This function is a linear interpolation
using the wind data from the current TPC.

89

Find the index numbers, p0 and p1, for the bounding altitudes.

p0 = 0

p1 = 0

for (k = 1; k ≤ Number of Wind Altitudesi; k = k + 1)

if (Wind Altitudei, k ≤ Altitude) p0 = k

if ((Wind Altitudei, k ≥ Altitude)and (p1 = 0)) p1 = k

if (p1 = 0) p1 = Number of Wind Altitudesi

If Altitude = Wind Altitudep0 or if Altitude = Wind Altitudep1 then the wind data from that point is
used. Otherwise, Altitude is not at an altitude on the wind profile of TCPi, i.e., z = Wind Altitudei, k,
then:

if (Wind Altitudep1 < Wind Altitudep0) r = 0

else r = (Altitude - Wind Altitudep0) / (Wind Altitudep1 - Wind Altitudep0)

Wind Speed = ((1 - r) * Wind Speedp0) + (r * Wind Speedp1)

a = DeltaAngle(Wind Directionp0, Wind Directionp1)

Wind Direction = Wind Directionp0 + (r * a)

Temperature Deviation = ((1 - r) * Temperature Deviationp0) + (r * Temperature Deviationp1)

FindMachCasTransitionAltitude
The function FindMachCasTransitionAltitude is used to compute the altitude where the input Mach,

Mach, and CAS, Cas, values would be equivalent

z = (1 - (((((0.2 * ((Cas/661.48)2) + 1)3.5) - 1) / (((0.2 * (Mach2) + 1)3.5) - 1))0.19026)) / 0.00000687535

return the value of z.

RadialRadialIntercept
The function RadialRadialIntercept determines if two place-and-radial sets, each defined by latitude,

longitude, and a track angle, will intersect and if so, calculates the latitude and longitude of the intercept
point. Inputs are values of latitude, Latitude, longitude, Longitude, and angle, Angle; one set of each for
the two place-and-radial sets. If a valid intercept can be calculated, then the intercept point's latitude and
longitude are output, NewLatitude and NewLongitude, and the function returns a valid indication.
Otherwise, the function returns an invalid indication.

Calculate the distance and the track angle between the two input positions.

distance1,2 = arccosine(sine(Latitude1) * sine(Latitude2) + cosine(Latitude1) * cosine(Latitude2) *
cosine(Longitude1 - Longitude2))

track1,2 = arctangent2(sine(Longitude2 - Longitude1) * cosine(Latitude2), cosine(Latitude1) *

90

sine(Latitude2) - sine(Latitude1) * cosine(Latitude2) * cosine(Longitude2 - Longitude1))

Check for error in the intercept calculation.

error = false

track1 = Angle1 - track1,2 + 90

Adjust track1 such that 0 ≥ track1 ≥ 360

track2 = Angle2 - track1,2 + 90

Adjust track2 such that 0 ≥ track2 ≥ 360

Determine the quadrant.

ang1 = track2 + 180

Adjust ang1 such that 0 ≥ ang1 ≥ 360

if ((|DeltaAngle(track1 , track2)| < 2) or (|DeltaAngle(track1 , ang1)| < 2))

Determine if the angles are really 180 degrees apart.

ang2 = Angle2 + 180

Adjust ang2 such that 0 ≥ ang2 ≥ 360

ang3 = DeltaAngle(Angle1, ang2)

ang4 = DeltaAngle(Angle1, track1,2)

if ((|ang3| > 2) or (|ang4| > 2)) error = true

if (error = false)

RelativeLatLong(Latitude1, Longitude1, track1,2, distance1,2 / 2, NewLatitude, NewLongitude)

else

Determine the quadrant.

if (track1 ≤ 90) quadrant1 = 1

else if (track1 ≤ 180) quadrant1 = 2

else if (track1 ≤ 270) quadrant1 = 3

else quadrant1 = 4

if (track2 ≤ 90) quadrant2 = 1

91

else if (track2 ≤ 180) quadrant2 = 2

else if (track2 ≤ 270) quadrant2 = 3

else quadrant2 = 4

if (quadrant1 = 1)

if ((quadrant2 = 2) or (quadrant2 = 3)) error = true

if ((quadrant2 = 1) and (chktk1 < chktk2)) error = true

else if (quadrant1 = 2)

if ((quadrant2 = 1) or (quadrant2 = 4)) error = true

if ((quadrant2 = 2) and (chktk1 > chktk2)) error = true

else if (quadrant1 = 3)

if ((quadrant2 = 1) or (quadrant2 = 2) or (quadrant2 = 4)) error = true

if (track1 > track2) error = true

else

if ((quadrant2 = 1) or (quadrant2 = 2) or (quadrant2 = 3)) error = true

if (track1 < track2) error = true

if (error = false)

trx1 = |Angle1 - track1,2|

Adjust trx1 such that 0 ≥ trx1 ≥ 360

trx2 = |Angle2 - (track1,2 + 180)|

Adjust trx2 such that 0 ≥ trx2 ≥ 360

if (trx1 > 180) trx1 = 360 - trx1

if (trx2 > 180) trx2 = 360 - trx2

ang5 = 180 - trx1 - trx2

if ((ang5 = 0) or ((ang5-180) = 0) or (distance1,2 = 0)) error = true

if (error = false)

distance2 = distance1,2 * sine(trx2) / sine(ang5)

92

if (distance2 ≤ 0) distance2 = - distance2

if (distance2 > max_intercept_range) error = true

else RelativeLatLong(Latitude1, Longitude1, Angle1, distance2, NewLatitude,
NewLongitude)

if (error) return false

else return true

RelativeLatLon
The function RelativeLatLon computes the latitude and longitude from input values of latitude,

BaseLat, longitude, BaseLon, angle, Angle, and range, Range.

if (Angle = 180) Latitude = -Range / 60 + BaseLat

else Latitude = ((Range * cos(Angle)) / 60) + BaseLat

if ((BaseLat = 0) or (BaseLat = 180)) Longitude = BaseLon

else if (Angle = 90) Longitude = BaseLon + Range / (60 * cos(BaseLat))

else if (Angle = 270) Longitude = BaseLon - Range / (60 * cos(BaseLat))

else

r1 = tangent(45 + 0.5 * Latitude)

r2 = tangent(45 + 0.5* BaseLat)

if ((r1 = 0) or (r2 = 0)) Longitude = 20, just some number, mark this as an error condition.

else Longitude = BaseLon + (180 / pi *(tangent(Angle)* (log(r1) - log(r2))))

TodAccelerationDistance

The TodAccelerationDistance function estimates the distance required for the special case of an
acceleration from the top-of-descent Mach to the descent Mach at the top-of-descent. This function is
invoked from HandleDescentAccelDecel and DoTodAcceleration, which passes in the index number for
the TOD waypoint, TodIndex, and the Mach value at the TOD, MachAtTod. The function returns a
validity flag to indicate if a TOD acceleration is valid, Valid, and if valid, the indices in the TCP list
where the acceleration occurs, AccelIndex, and the distance from the index point of the acceleration,
Distance.

Perform an initialization of flags and counters.

fini = false

skip = true

93

k = TodIndex

Make an initial guess of the distance to the new Mach value.

Descent Speed = Mach Descent Mach

Mach Rate1 = CasToMach(0.75 kt / sec, AltitudeTodIndex)

Compute the time required to do the deceleration.

t = (Mach Descent Mach – MachAtTod) / Mach Rate1

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind ProfileTodIndex, AltitudeTodIndex, Wind Speed, Wind Direction,
 Temperature Deviation)

Get the ground track at the current point.

if (WptInTurn(WaypointTodIndex)) track = Ground TrackTodIndex + 1

else track = Ground TrackTodIndex

TOD Ground Speed = ComputeGndSpeedUsingMachAndTrack(MachAtTod, track, AltitudeTodIndex,
Wind Speed, Wind Direction, Temperature Deviation)

Descent Ground Speed = ComputeGndSpeedUsingMachAndTrack(Mach Descent Mach, track,
AltitudeTodIndex, Wind Speed, Wind Direction, Temperature Deviation)

The average ground speed is as follows:

Average Ground Speed = (TOD Ground Speed + Descent Ground Speed) / 2

The distance estimate, dx, is Average Ground Speed * t with a conversion to nmi.

dx = Average Ground Speed * t / 3600

Now compute better estimates, doing this twice to refine the estimation.

for (i = 1; i ≤ 2; i = i + 1)

skip = false

Determine if this distance is beyond the next downstream waypoint.

k = TodIndex

d = DTGTodIndex - dx

while ((k < (index number of the last waypoint – 1)) and (DTGk+1 > d))

if ((k ≠ TodIndex) and (Crossing Ratek > 0)) skip = True

94

k = k + 1

Compute the wind speed and direction at the new altitude.

InterpolateWindWptAltitude(Waypointk, Altitudek, Wind Speed, Wind Direction,
 Temperature Deviation)

The ground speed at this point is:

Descent Ground Speed = ComputeGndSpeedUsingMachAndTrack(Mach Descent Mach, Ground
Trackk, Altitudek, Wind Speed, Wind Direction, Temperature Deviation)

The average ground speed is:

Average Ground Speed = (TOD Ground Speed + Descent Ground Speed) / 2

The distance, dx, is:

dx = Average Ground Speed * t / 3600

If there is a valid deceleration point, add it.

Valid = not skip

AccelIndex = k

Distance = dx

WptInTurn
The WptInTurn function simply determines if the waypoint is between a turn-entry TCP and a turn-exit

TCP. If this is true, then the function returns a value of true, otherwise it returns a value of false.

fini = false

within = false

j = i + 1

while ((fini = false) and (j < (index number of the last waypoint)))

if (TurnTypej = turn-entry) fini = true

else if (TurnTypej = turn-exit)

fini = true

within = true

j = j + 1

return within

95

Summary
The algorithm described in this document takes as input a list of waypoints, their trajectory-specific

data, and associated wind profile data. This algorithm calculates the altitude, speed, along path distance,
and along path time for each waypoint and every point along the path where the speed, altitude, or ground
track changes. A full 4D trajectory can then be generated by the techniques described. A software
prototype has been developed from this documentation.

96

References
1. Abbott, T. S.; and Moen, G. C,: Effect of Display Size on Utilization of Traffic Situation Display for Self-

Spacing Task, NASA TP-1885, 1981.

2. Abbott, Terence S.: A Compensatory Algorithm for the Slow-Down Effect on Constant-Time-Separation
Approaches, NASA TM-4285, 1991.

3. Sorensen, J. A.; Hollister, W.; Burgess, M.; and Davis, D.: Traffic Alert and Collision Avoidance System
(TCAS) - Cockpit Display of Traffic Information (CDTI) Investigation, DOT/FAA/RD-91/8, 1991.

4. Williams, D. H.: Time-Based Self-Spacing Techniques Using Cockpit Display of Traffic Information
During Approach to Landing in a Terminal Area Vectoring Environment, NASA TM-84601, 1983.

5. Koenke, E.; and Abramson, P.: DAG-TM Concept Element 11, Terminal Arrival: Self Spacing for
Merging and In-trail Separation, Advanced Air Transportation Technologies Project, 2004.

6. Abbott, T. S.: Speed Control Law for Precision Terminal Area In-Trail Self Spacing, NASA TM 2002-
211742, 2002.

7. Osaguera-Lohr, R. M.; Lohr, G. W.; Abbott, T. S.; and Eischeid, T. M.: Evaluation Of Operational
Procedures For Using A Time-Based Airborne Interarrival Spacing Tool, AIAA-2002-5824, 2002.

8. Lohr, G. W.; Osaguera-Lohr, R. M.; and Abbott, T. S.: Flight Evaluation of a Time-based Airborne
Inter-arrival Spacing Tool, Paper 56, Proceedings of the 5th USA/Europe ATM Seminar at Budapest,
Hungary, 2003.

9. Krishnamurthy, K.; Barmore, B.; Bussink, F. J.; Weitz, L.; and Dahlene, L.: Fast-Time Evaluations Of
Airborne Merging and Spacing In Terminal Arrival Operations, AIAA-2005-6143, 2005.

10. Barmore, B.; Abbott, T. S.; and Capron, W. R.: Evaluation of Airborne Precision spacing in a Human-
in-the-Loop Experiment, AIAA-2005-7402, 2005.

11. Hoffman, E.; Ivanescu, D.; Shaw, C.; and Zeghal, K.: Analysis of Constant Time Delay Airborne Spacing
Between Aircraft of Mixed Types in Varying Wind Conditions, Paper 77, Proceedings of the 5th
USA/Europe ATM Seminar at Budapest, Hungary, 2003.

12. Ivanescu, D.; Powell, D.; Shaw, C.; Hoffman, E.; and Zeghal, K.: Effect Of Aircraft Self-Merging In
Sequence On An Airborne Collision Avoidance System, AIAA 2004-4994, 2004.

13. Weitz, L.; Hurtado, J. E.; and Bussink, F. J. L.: Increasing Runway Capacity for Continuous Descent
Approaches Through Airborne Precision Spacing, AIAA 2005-6142, 2005.

14. Barmore, B. E.; Abbott, T. S.; and Krishnamurthy, K.: Airborne-Managed Spacing in Multiple Arrival
Streams, Proceedings of the 24th Congress of the International Council of Aeronautical Sciences,, 2004.

15. Baxley, B.; Barmore, B.; Bone, R.; and Abbott, T. S.: Operational Concept for Flight Crews to
Participate in Merging and Spacing of Aircraft, 2006 AIAA Aviation Technology, Integration and
Operations Conference, 2006.

16. Lohr, G. W.; Oseguera-Lohr, R. M.; Abbott, T. S.; Capron, W. R.; and Howell, C. T.: Airborne
Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool, NASA/TM-2005-
213772, 2005.

17. Oseguera-Lohr, R. M.; and Nadler, E. D.: Effects of an Approach Spacing Flight Deck Tool on Pilot
Eyescan, NASA/TM-2004-212987, 2004.

18. Lohr, G. W.; Oseguera-Lohr, R. M.; Abbott, T. S.; and Capron, W. R.: A Time-Based Airborne Inter-
Arrival Spacing Tool: Flight Evaluation Result, ATC Quarterly, Vol 13 no 2, 2005.

19. Krishnamurthy, K.; Barmore, B.; and Bussink, F. J. L.: Airborne Precision Spacing in Merging Terminal
Arrival Routes: A Fast-time Simulation Study, Proceedings of the 6th USA/Europe ATM Seminar, 2005.

20. Abbott, T. S.: A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts,
NASA CR-2007-214899, 2007.

97

21. Abbott, T. S.: A Revised Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing
Concepts, NASA CR-2010-216204, 2010.

22. Abbott, T. S.: A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts:
Third Revision, NASA CR-2014-218288, 2014.

23. RTCA: Minimum Operational Performance Standards (MOPS) for Flight-deck Interval Management
(FIM), post-FRAC draft, 2015.

24. Olson, Wayne M.: Aircraft Performance Flight Testing, AFFTC-TIH-99-01, 2000.

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

1. REPORT DATE (DD-MM-YYYY)

01/05/2018

2. REPORT TYPE
Contractor Report

4. TITLE AND SUBTITLE

A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing
Concepts: Fourth Revision

Abbott, Terence S.

NASA Langley Research Center
Hampton, Virginia 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

5a. CONTRACT NUMBER

NNL15AA03B

5f. WORK UNIT NUMBER

 330693.04.10.07.09

10. SPONSOR/MONITOR'S ACRONYM(S)
NASA

NASA-CR-2018-219828
12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified
Subject Category 03
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael T. Palmer

14. ABSTRACT
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an
augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints
on the route. This version of the algorithm now accommodates routes that are totally in the cruise regime. The algorithm calculates the
altitude, speed, along path distance, and along path time for each waypoint. Wind data at each of these waypoints are also used for the
calculation of ground speed and turn radius.

 Interval management; Spacing; Trajectory

 U U U UU 106

19a. NAME OF RESPONSIBLE PERSON STI

Help Desk(email help@sti.nasa.gov
19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

