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Abstract

Recently, the makespan-minimization problem of compiling
a general class of quantum algorithms into near-term quan-
tum processors has been introduced to the AI community. The
research demonstrated that temporal planning is a strong so-
lution approach for the studied class of quantum circuit com-
pilation (QCC) problems. In this paper, we explore the use
of methods from operations research, specifically constraint
programming (CP), as an alternative and complementary ap-
proach to temporal planning. We also extend previous work
by introducing two new problem variations that incorporate
important characteristics identified by the quantum comput-
ing community. We apply temporal planning and CP to the
baseline and extended QCC problems as both stand-alone and
hybrid approaches. The hybrid method uses solutions found
by temporal planning to warm-start CP, leveraging the ability
of temporal planning to find satisficing solutions to problems
with a high degree of task optionality, an area that CP typ-
ically struggles with. These solutions are then used to seed
the CP formulation which significantly benefits from inferred
bounds on planning horizon and task counts provided by the
warm-start. Our extensive empirical evaluation indicates that
while stand-alone CP is not competitive with temporal plan-
ning, except for the smallest problems, CP in a hybrid setting
is beneficial for all temporal planners in all problem classes.

1 Introduction
Quantum computers apply quantum operations, called quan-
tum gates, to qubits, the basic memory unit of quantum pro-
cessors. Quantum algorithms are often specified as quan-
tum circuits on idealized hardware since physical hardware
has varying characteristics and architectures. These ideal-
ized quantum circuits must be compiled to specific hardware
by adding additional gates that move qubit states to locations
where the desired gate can act on them. Compilations that
minimize the duration not only return results more quickly,
but are vital to obtain results on near-term quantum hard-
ware that does not support significant quantum error correc-
tion or fault tolerance: decoherence effects can destroy the
computation in a short time. For this reason, it is critical to
minimize computation duration.

Recently, use of temporal planners to compile quantum
circuits was explored (Venturelli et al. 2017); machine in-
structions were modeled as PDDL2.1 durative actions, en-
abling domain-independent temporal planners to find a par-

allel sequence of conflict-free instructions to implement the
high-level quantum algorithm. Several state-of-the-art tem-
poral planners were used to show empirically that temporal
planning is a promising approach to compile circuits of var-
ious sizes to a model hardware chip featuring the essential
characteristics of newly emerging quantum hardware.

In this paper, we extend the earlier work in three direc-
tions. First, we explore constraint programming (CP) as a
complementary approach to temporal planning for quantum
circuit compilation (QCC). Historically, operations research
(OR) techniques have been the best approach for many com-
binatorial optimization problems and serve as the backbone
of a number of planners. Our most significant investigation
explores CP as an alternative to temporal planning for QCC.
We use CP as either (1) a stand-alone approach or (2) work-
ing in tandem with temporal planners. Our main contribu-
tions are:

• A CP approach for QCC that is competitive with exist-
ing temporal planners on small problems, though not for
larger problems.

• A hybrid planning/CP approach where temporal-planning
solutions are used to warm-start the CP solver. Given the
same amount of running time, our hybrid consistently out-
performs both stand-alone temporal planning and CP ap-
proaches across all solvers and problem classes.

Second, we expand the previous problem definition (Ven-
turelli et al. 2017) to include further optimization and ad-
ditional constraints which reflect various realistic hardware
architectures. Our expanded benchmarks include: (1) Initial-
ization of qubit state locations, rather than starting from de-
fault locations and (2) crosstalk constraints, placing addi-
tional restrictions on gate operations.

Finally, we consider an expanded set of temporal plan-
ners for a more complete evaluation of temporal planning
for QCC. Our extensive empirical evaluation shows that the
additional constraints lead to a more diverse set of tempo-
ral planning benchmarks with different characteristics. The
tested temporal planners, which utilize different planning
frameworks, perform differently across problem variations
belonging to the same problem class.

While there has been active development of software li-
braries to synthesize and compile quantum circuits from
algorithm specifications (Wecker and Svore 2014; Smith,
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Figure 1: Left: A schematic for the 8-qubit chip design in-
spired by the prototype described in (Sete, Zeng, and Rigetti
2016) and used in (Venturelli et al. 2017) and in our nu-
merical experiments. Available 2-qubit gates are represented
by colored edges (swap capability symbolized by double ar-
rows). Each color is associated to a distinct duration of the
P-S gate (three for blue and four for red, in normalized clock
cycles). Additionally, 1-qubit mixing gates of unit duration
are present at each qubit (black dot). The yellow crosses on
qubits 3 and 4 visualize the disabled qubits during the action
of a gate between qubits 1 and 2 when crosstalk constraints
are considered. Right: Dashed boxes indicate the 2 different
chip sizes used in our empirical evaluation (see Sec. 6).

Curtis, and Zeng 2016; Steiger, Häner, and Troyer 2016;
Devitt 2016; Barends et al. 2016), few approaches have been
explored for compiling idealized quantum circuits to realis-
tic quantum hardware with a specific focus on swap gate
insertions (Beals et al. 2013; Brierly 2015; Bremner, Mon-
tanaro, and Shepherd. 2016), targeting algorithms that could
be run in the near-term (Guerreschi and Park 2016).

The rest of our paper is structured as follows: in Section 2,
we provide some background on QCC and the existing ap-
proach to solving QCC using domain-independent tempo-
ral planners. Next, Section 3 discusses our approach in us-
ing CP as a stand-alone solver for QCC. Section 4 discusses
planning horizon and task quantities. Section 5 describes our
novel planning-CP hybrid approach. Section 6 details our
empirical evaluation results. We end the paper with Section
7 our conclusion, and potential future work.

2 Quantum Circuit Compilation
General quantum algorithms are often described in an ideal-
ized architecture in which a gate acts on any subset of avail-
able qubits. However, in an actual superconducting qubit
architecture, such as the ones manufactured by IBM (IBM
2017), Rigetti (Reagor et al. 2017), Google (Neill et al.
2017) and UC Berkeley (Ramasesh et al. 2017), physical
constraints impose restrictions on pairs of qubits that support
gate interactions. Qubits in these quantum processors can be
thought of as nodes in a planar graph, with 2-qubit quantum
gates associated to edges and single qubit quantum gates as-
sociated with nodes. In Fig. 1 we present a model chip that is
used in our benchmarks. Following the most common choice
for benchmarks in the literature, the model quantum algo-
rithm used is a variant of the “Quantum Alternating Operator

Ansatz” (Hadfield et al. 2017) (also known as “Quantum Ap-
proximate Optimization Algorithm” (QAOA) (Farhi, Gold-
stone, and Gutmann. 2014)) applied to the NP-Hard prob-
lem of Max-Cut. As described in (Venturelli et al. 2017) this
algorithm is specified by a single type of 2-qubit gate, the
phase separation (p-s) gate, which needs to be applied to a
specific set of quantum variables depending on the problem
instance. An example of problem instance can be found in
Fig. 2-a where the edges of the graph indicate the required p-
s gates. In the model chip, gate colors (red or blue) indicate
different p-s gate durations in terms of clock cycles. A se-
quence of swap gates moves the information content (qubit
states) of two distant qubits to a location where a desired p-s
gate can be applied. Swap gates may be available only on
a subset of edges in the hardware graph and swap duration
may depend on the edge, however, in our benchmarks we
assume swap gates are available on each edge with constant
duration equal to 2 clock cycles.

Our benchmark algorithm works by repeating the same
circuit P times, interleaving each run by a mixing phase. In
the mixing phase, a set of single qubit mixing gates are ap-
plied. These gates are located at each qubit. All p-s gates that
involve a specific qubit state must be carried out before the
mixing on that state can be applied and the second p-s stage
initiated. As in previous work, we consider P ∈ {1, 2}.

2.1 Definitions
We let the set of qubits in the quantum circuit be represented
as N := {n1, n2, . . . , nα} and the set of qubit states be rep-
resented as Q := {q1, q2, . . . , qβ}. Each qubit, ni ∈ N ,
starts in its corresponding (by index) state, qj ∈ Q. The ini-
tial configuration of the circuit has qubit state j mapped to
qubit i, for i = j (Note: in the problems studied, α = β).
An integer value T is the scheduling horizon. Determining
an appropriate T is discussed in Section 4.1.

We let S represent the set of swap gates in the circuit ar-
chitecture, S := {s1, s2, . . . , sγ}, where each gate, sk ∈ S,
involves a qubit pair, 〈ni, nj〉. Similarly, we let P represent
the set of p-s gates, P := {p1, p2, . . . , pδ}, where each of
these gates, p` ∈ P involves a pair of qubits. We define
the set of swap and p-s gates that involve qubit ni ∈ N
as S(i) and P (i), respectively. Swap and p-s gates have
distinct durations for their activation (τswap and τ`, respec-
tively), with p-s gate duration depending on the class of the
gate, visualized as different colors in Figure 1 (thus, duration
τ` ∈ {τred, τblue},∀p` ∈ P ). When the problem involves
multiple p-s stages, mixing gates are available at each node
in the architecture with a duration τmix.

The set of problem goals, defined as G :=
{g1, g2, . . . , gε}, encode the specific qubit state pairs
that need p-s gates applied to them. Each goal, go ∈ G,
identifies a pair of qubit states, 〈qi, qj〉. To achieve the goal,
these quantum states must be adjacent in the architecture
graph (in the case of the studied architecture, all adjacent
qubits have a connecting a p-s gate). The p-s gate used for
goal activation is a decision variable.

Example: Given the 8-qubit architecture in Figure 1 with
each qubit ni ∈ N initially associated to the qubit state



qj ∈ Q (with i = j), let us assume that the idealized cir-
cuit requires the application of a p-s gate to the states q2 and
q4. The sequence of gates to achieve the goal are:

{SWAPn4,n1
, SWAPn2,n3

} → SWAPn1,n2
→ PSredn2,n3

The sequence takes 2τswap + τred clock cycles where τ?
represents the duration of the ?-gate.

2.2 Temporal Planning for QCC
The QCC problem can be modeled as a temporal planning
problem, utilizing the standard planning domain definition
language (PDDL) (Venturelli et al. 2017), as follows:

• Predicates are used to model the location of each qubit
state and if the pre-defined goal requirement on a pair of
qubit states has been achieved or not.

• The swap and p-s gates are modeled as temporal actions
with: (1) conditions representing constraints on whether
or not the involved qubit states residing on connecting
qubit pairs and if the required gates have not been already
executed; and (2) effects representing the new locations
of the qubit states and that the desired p-s goals have been
achieved.

• The standard objective function of minimizing the total
plan makespan matches well with the desired goal of min-
imizing the circuit duration in the QCC problems studied.

While the basic mapping is outlined above, there are addi-
tional constraints and actions involved with different vari-
ations of the QCC problem (e.g., multiple p-s stages), we
refer to (Venturelli et al. 2017) for the details.

2.3 Extensions
In this paper, we target QCC problems beyond the one ad-
dressed in (Venturelli et al. 2017). With the addition of
qubit state initialization (QCC-I) and crosstalks (QCC-X)
problem variations, we allow the implemented techniques to
solve a unified problem that originally required two inde-
pendent steps and handle a type of constraint that is often
present in existing hardware.

Qubit State Initialization (QCC-I) In the previously
studied QCC problem qubit states are assigned their ini-
tial locations on the chip before problem solving (e.g., qubit
state qj ∈ Q is initially assigned to qubit ni ∈ N ). Here we
both assign the initial locations of the qubit states and find
the sequence of gates to achieve the goals. Modeling this
initialization step in PDDL is rather straight forward.

• In the initial state: all qubits are “empty” and all qubit
state locations are undetermined.

• Action ai,j initializes the location of qubit state qj ∈ Q
on qubit ni ∈ N if: (1) qj has not been initialized and (2)
ni is still empty.

• Action ainit finish finalizes the initialization process with
the condition that all qubit states have been initialized.
After this action finishes executing, then all actions of the
original QCC problem can start.

Crosstalk (QCC-X) In the existing problem definition,
any given qubit can be involved with a single gate op-
eration at any given time. For certain hardware architec-
tures, crosstalk constraints further restrict qubit involve-
ment. We represent this family of constraints inspired by
the technology implemented by the devices manufactured
by Google (Boxio 2016).1 Specifically, when a given qubit
ni ∈ N is involved in a gate operation, any qubit adjacent to
it in the architecture is prevented from engaging in any gate
operation. For example, if a 2-qubit gate operation is carried
out between 〈n1, n2〉 in Figure 1, then no gate operation in-
volving n3 (connected to n2) or n4 (connected to n1) can be
started until the 〈n1, n2〉 operation is complete.

To model crosstalk constraints in PDDL, we introduce:

• A new predicate crosstalk(ni) to indicate if ni is cur-
rently disabled by a gate operating on an adjacent qubit.

• An action representing a gate operation on a
pair of adjacent qubits 〈ni, nj〉 will: (1) require
(not (crosstalk(ni)) ∧ (not (crosstalk(nj))) as action
pre-conditions, and (2) for every qubit nk that is con-
nected to either ni or nj , crosstalk(nj) is part of the
effect list of the start of the action.

3 Constraint Programming for Quantum
Circuit Compilation

Operations research (OR) investigates solving many combi-
natorial optimization problems closely related to planning.
Various techniques developed in OR are also utilized in ex-
isting planners as off-the-self solvers (Kautz and Selman
1999; Do and Kambhampati 2000; van den Briel and Kamb-
hampati 2005), routines to solve key sub-problems (Benton,
Coles, and Coles 2012) in decomposed approaches, mod-
els to calculate heuristic values (Pommerening et al. 2015;
Piacentini et al. 2018), or as inference techniques cus-
tomized for planning (Vidal and Geffner 2006).

Given their performance, we investigate the use of OR
methods, namely constraint programming (CP), as an al-
ternative and complementary approach to temporal plan-
ning for QCC problems. Preliminary efforts to develop a
mixed-integer programming (MIP) formulation yielded less
promising results and we elected not to pursue this MIP
models for this work. In this section, we detail a CP model
for the QCC problem.

3.1 Decision Variables
As is common in CP, our formulation utilizes continuous,
integer, and optional/mandatory interval decision variables.
An optional interval variable, var, is a rich variable type
whose possible values are defined over a convex interval:
var := {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}, where the variable
takes on the value ⊥ if it is not present in the solution2 and

1Similar constraints are present in the devices by IBM and by
UC Berkeley. These constraints could model the loss of circuit fi-
delity due to spurious uncompensated electromagnetic effects or to
uncalibrated interactions. However, parallel execution of adjacent
circuitry can also be prevented by design.

2Mandatory interval variables must be present in the solution.



s and e represent the start and end values of the interval.
Such interval variables are a natural way to model swap, p-
s, and mixing gate tasks, as they have duration and need to
be assigned a start time. The variable Pres(var) takes on a
value of 1 if the interval variable var is present in the solu-
tion. Constraints are only active over present interval vari-
ables. If present, Start(var), End(var), and Length(var) re-
turn the integer start and end times, as well as the length, of
the interval variable var. Additionally, we can assign inter-
val variables to sequences which model relationships such as
Pre(var), which returns the interval variable preceding var
in a candidate solution. A key limitation to CP technology,
as opposed to temporal planning, is that it can only reason
over variables in the model. For QCC problems, the number
of times a particular swap or p-s gate will be used in a solu-
tion plan is unknown a priori, and thus we must define upper
bounds for these values and allocate these quantities of tasks
(instantiated as optional interval variables) to the model. We
define bounds on swaps, Uswap, and p-s activations, Ups, for
each gate in the architecture in Section 4.2.

We model the problem in CP with an event-based formu-
lation, tracking qubit state after each swap, p-s, or mixing
gate task that involves that particular qubit. We define the
set of all events potentially involving qubit ni ∈ N as Ei,
including a dummy event for qubit state initialization.

The decision variables with associated domains (permis-
sible values) used in our formulation are:
• Cmax := (continuous) Makespan of the generated plan

and objective function value of the formulation, with pos-
sible values in 0 ≤ Cmax ≤ T .

• xi,j := (integer) State of qubit ni ∈ N after task
j ∈ Ei. Each of these variables takes on a value
in the set Q of available qubit states, namely xi,j ∈
{1, 2, . . . , |Q|},∀j ∈ Ei, ni ∈ N .

• yk,m := (optional interval) Swap task m for swap gate
sk ∈ S. If present, has a start time Start(yk,m) ∈ [0, T ]
and duration Length(yk,m) = τswap. The set of optional
swap tasks available for swap gate sk ∈ S is defined as:
ȳk := {yk,1, yk,2, . . . , yk,Uswap

}.
• z`,n := (optional interval) P-s task n for p-s gate
p` ∈ P . If present, has start time Start(z`,n) ∈ [0, T ] and
duration Length(z`,n) = τps, where τps ∈ {τred, τblue},
as per the architecture. The set of optional p-s tasks
available for p-s gate p` ∈ P is defined as: z̄` :=
{z`,1, z`,2, . . . , z`,Ups}.

• Zo := (interval) Mandatory goal p-s task for goal go ∈
G. Start time Start(Zo) ∈ [0, T ], duration Length(Zo)
∈ {τred, τblue} and end time End(Zo). The makespan ob-
jective is the time of the latest completion time of these
variables, namely: Cmax := maxgo∈G

(
End(Zo)

)
.

In problems with two p-s stages, we include the following
additional decision variables for mix gates:
• ωi,j := (optional interval) Task for mixing qubit state
qj ∈ Q at qubit ni ∈ N . If present, has start time
Start(ωi,j)∈ [0, T ] with duration Length(ωi,j) =τmix. The
set of optional mixing tasks available for qubit ni ∈ N is
defined as: ω̄i := {ωi,1, ωi,2, . . . , ωi,β}.

• Ωj := (interval) Mandatory mixing task for qubit state
qj ∈ Q. Has start time Start(Ωj) ∈ [0, T ] duration
Length(Ωj) = τmix, and end time, End(Ωj), representing
when the mixing of state qj ∈ Q is complete.

3.2 Formulation Objective and Constraints
With the problem parameters, decision variables, and asso-
ciated domains defined, we detail our event-based CP for-
mulation in Eqns. (1 - 12). Constraints (1 - 9) are required
for one and two-stage p-s, while Constraints (10 - 12) are
only required for two-stage p-s problems.

Objective (1) represents the problem objective which is to
minimize the makespan, Cmax, of the circuit compilation.
The secondary objective, reduced in weight by a sufficiently
small value ξ, minimizes the number of swap tasks.3 The ad-
dition of this component was found to improve solver per-
formance while remaining a reasonable objective for QCC
problems. Constraint (2) initializes the qubit states to their
required initial values and Constraint (3) requires that solu-
tion Cmax be greater than the end time all goal variables.

We use a number of global constraints (van Hoeve and
Katriel 2006). These constraints are defined over a set of
variables and encapsulate frequently recurring combinato-
rial substructure in a way that improves the branch-and-infer
search implemented by CP solvers. Constraint (4) uses the
NoOverlap global constraint (Baptiste, Le Pape, and Nui-
jten 2012) to perform incomplete, efficient domain filter-
ing on the start times of the interval variables. This mod-
eling treats each qubit, ni ∈ N , as a unary capacity re-
source, and ensures that swap, p-s, and mix gates are acti-
vated in such a way that two gates involving the same qubit
are never active at the same time. The set Ei, consisting of
all tasks potentially involving qubit ni ∈ N , is defined as:
Ei := {ẋ} ∪ {ȳk : sk ∈ S(i)} ∪ {z̄` : p` ∈ P (i)} ∪ ω̄i,
where ẋ is a dummy task.

Constraint (5) makes use of the Alternative global con-
straint (Laborie 2009), which links interval variables to a set
of optional interval variables, enforcing that only one vari-
able from the optional set can be present and the start time
must coincide with the mandatory variable. We use this con-
straint to maintain the relationship between the goal vari-
ables, Zo, and the optional p-s variables, z`,n. For each p-s
gate, the z`,n tasks are ordered such that they coincide with
a single goal, and thus |G| = |z̄`|,∀p` ∈ P . Each goal acti-
vates a single p-s gate task across the set of p-s gates.

Constraint (6) implements qubit state updates when a
swap interval variable is present, swapping the states of the
qubits involved in the corresponding physical swap gate.
The term prei(yk,m) returns the task previous to swap task
yk,m in the sequence for qubit ni ∈ N , allowing the mod-
eling of qubit state swap between the qubit pair, 〈i, j〉, in-
volved in gate sk ∈ S. Constraint (7) models a similar re-
lationship for p-s gate tasks. We note that while swap tasks
result in an exchange of states between qubits ni and nj ,
after a p-s task qubit states remain unchanged.

3This value is subtracted from the objective when comparing to
temporal planning approaches for consistency.



Minimize:

Cmax + ξ ·
∑

sk∈S

∑
yk,m∈ȳk

Pres(yk,m) (1)

Subject to:
xi,0 = i, ∀i ∈ {1, 2, . . . , α} (2)
Cmax ≥ End(Zo), ∀go ∈ G (3)
NoOverlap(Ei), ∀ni ∈ N (4)
Alternative(Zo, [z1,o, . . . , zδ,o]), ∀go ∈ G (5)
Pres(yk,m)→ (xi,yk,m

= xj,prej(yk,m))

∧ (xj,yk,m
= xi,prei(yk,m)),

∀yk,m ∈ ȳk, 〈i, j〉 ∈ sk, sk ∈ S (6)
Pres(z`,n)→ (xi,z`,n = xi,prei(z`,n))

∧ (xj,z`,n = xj,prej(z`,n)),

∀z`,n ∈ z̄`, 〈i, j〉 ∈ p`, p` ∈ P (7)
Pres(z`,n)→ (xi,prei(z`,n) = g`,1 ∧ xj,prej(z`,n) = g`,2)

∨ (xi,prei(z`,n) = g`,2 ∧ xj,prej(z`,n) = g`,1),

∀z`,n ∈ z̄`, 〈i, j〉 ∈ p`, p` ∈ P (8)
Pres(yk,m) ≥ Pres(yk,m+1),

∀yk,m ∈ ȳk \ yk,Uswap , sk ∈ S (9)

Alternative(Ωj , [ω1,j , . . . , ωα,j ]), ∀qj ∈ Q (10)
Start(Ωj) ≥ End(Zo), ∀go ∈ G(j), qj ∈ Q (11)

End(Ωj) ≤ Start(Zo), ∀go ∈ G′(j), qj ∈ Q (12)

Constraint (8) ensures that if a particular p-s gate task is
present, z`,n, the states of the qubits involved, prior to the
application of the p-s gate, match the specific goal that the
p-s gate is matched with (goals being ordered to match the
optional p-s gate tasks at any physical p-s gate location). In
this constraint, the term g`,1 represents the first qubit state
required by goal g` ∈ G, and g`,2 the second.

To help remove some of the symmetries in the model,
Constraint (9) specifies that homogeneous optional swap
tasks must be used lexicographically.

For problems that have two stages of phase separation,
a mixing gate must be applied to each qubit state after all
the goals that utilize that state are achieved, and then the
goals must be repeated. To achieve this, we introduce a sec-
ond goal set,G′ := {gε+1, gε+2, . . . , g2·ε}, which duplicates
the first. We let the sets G(j) and G′(j) denote the goals
fromG andG′, respectively, that involve qubit state qj ∈ Q.
Constraint (10) ensures that only one of the optional mix-
ing tasks is used for each mixed qubit state and Constraints
(11) and (12) ensure that the mixing tasks separate the two
p-s goal sets. Additionally, goal requirements are amended
to include the duplicated goal set, G′.

3.3 Qubit Initializations and Crosstalks
The QCC problem extensions introduced in Section 2 re-
quire minor alterations to the CP model.

QCC-I In the baseline and crosstalk problem variants,
Constraint (2) is applied unchanged. However, in the qubit
initializations problem variant this constraint is removed and
replaced with the following:

AllDifferent(x1,0, x2,0, . . . , xα,0) (13)

The removal of Constraint (2) allows the solver to select ini-
tial values for qubit states, and the addition of Constraint
(13) enforces that the initial states on all the qubits be differ-
ent, ensuring that all qubit states are present on the chip.

QCC-X In the crosstalk variant of the problem, the qubits
that can simultaneously participate in gate activations are
further constrained. Constraint (4) is adjusted such that the
sets S(i) and P (i) for a given qubit ni ∈ N include the
gates that involve adjacent qubits to ni as well.

4 Setting Bounds
4.1 Planning Horizon
Our CP formulation can be implemented using a horizon set
to infinity, however, it was observed that smaller values im-
prove performance.

Let ψ be the length of the side of the chip (ψ = 3 for 8-
qubits, and ψ = 5 for 21-qubits), τmaxp−s = max(τred, τblue)
be the maximum possible p-s gate duration, and φ = (2 ·
ψ)− 3 be the maximum number of swaps required to bring
any two qubit states to a pair of adjacent qubits.
Lemma 1. ForP = 1 problems, T = |G|·(φ·τswap+τmaxp−s )
is an upper bound on the optimal plan makespan.

Proof. Imagine that we are only able to perform a single
task at a time. There are two components to achieving any
goal: i) moving the required qubit states to adjacent qubits,
and ii) applying a p-s gate task.

For a single goal, the worst case scenario would have the
required states located on the opposite sides of the archi-
tecture (e.g., located on n1 and n8 in Figure 1), requiring a
minimum of φ swaps to place the required states adjacent
to each other. Then, we must apply a p-s gate, which in the
worst case will take a duration of τmaxp−s . We can perform
all tasks for |G| goals in sequence, leading to a plan with
makespan no worse than: T = |G| · (φ · τswap + τmaxp−s ).

We use this T value as the planning horizon parameter in
all of our CP experiments for single p-s stage problems.4

4.2 Swap and P-S Gate Tasks
For the scheduling formulation, we determine the number
of activation tasks to be allocated per physical swap gate,
Uswap. If we consider achieving each goal sequentially, we
could potentially have to move a qubit state through the en-
tire architecture to become adjacent to the other qubit state.
In this case, each swap gate is used once for each goal, yield-
ing Uswap = |G|. Note that, although this value is observed
to perform well empirically, the circuit can work towards
goals in parallel, leading (potentially) to optimal solutions

4A trivial extension of this proof is used to yield a scheduling
horizon bound applicable to P = 2.



that use more than |G| swaps per physical gate; we will ex-
plore this in future work.

In contrast to swap tasks, our CP formulation allocates
exactly one p-s task to each physical p-s gate for each goal,
go ∈ G, resulting in Ups = |G|. This allows for the case
that all of the goals are achieved using the same physical p-s
gate. Note that the p-s gate tasks are actually ordered such
that the first task corresponds to the first goal, and so forth
(as noted in the CP model).

5 Hybrid Approach with Temporal Planning
and Constraint Programming

Temporal planning is able to find a satisficing plans for most
of the instances, often fairly quickly. The CP model, while
performing well on small problems, struggles to find so-
lutions for larger problems due to high levels of task op-
tionality, reducing the amount of inference that can be per-
formed. In 8-qubit problems with P = 1, CP must generate
(|S| · Uswap) = (8 · 8) = 64 optional swap tasks to repre-
sent the problem, and for 21-qubit problems, (24 ·21) = 504
tasks. In each of these cases, final solutions use roughly 10%
of these tasks. Similar observations are made for p-s and
mixing tasks.

Utilizing the ability of the temporal planners to find qual-
ity solutions early on in the search, we integrate the two tech-
niques via a warm-start procedure, a fairly common boost-
ing technique in OR (Kramer, Barbulescu, and Smith 2007;
Beck, Feng, and Watson 2011), where solutions found by
the temporal planner are encoded into a CP starting point.
To implement the warm-start, a solution translator converts
PDDL solutions to CP model variable values. An example
of a partial translation is provided in Table 1. In this exam-
ple, we assume that goal g1 involves 〈q1, q2〉, and that the
gates between n1 and n2 are labeled the first gates in the
architecture.5 Note that swap and goal gates in the PDDL
solution format must be translated into many variable values
in the CP model, due to task optionality. CP can benefit from
partial warm-starts (fixing a subset of variable values), how-
ever, empirical testing demonstrated that a full warm-start
(all variable values fixed) worked best. Additional transla-
tion is required to achieve a full warm-start, but is omitted
due to space constraints.

PDDL Solution CP Warm-Start

; Time 12.20 CP timeLimit = (timeLimit - 12.20)
; Makespan 25.00 sol.setValue(Cmax = 25)

0:(GOAL 1 2 Q1 Q2)[3]
sol.setStart(Z1 = 0), sol.setStart(z1,1 = 0),

sol.setAbsent(z`,1), ∀p`∈P |` > 1

7:(SWAP 1 2 Q1 Q2)[2]
sol.setStart(y1,1 = 7),

sol.setAbsent(y1,m), ∀y1,m∈ȳ1|m > 1

Table 1: Warm-start translation, PDDL solution to CP.

With the planning warm-start as an incumbent solution,
the CP solver can immediately derive a tighter bound on
planning horizon, T , equal to the makespan of the solution

5For illustrative purposes, we assume swap gate 1-2 is only used
once in the solution, incurring the absence of swap gates.

found by the planner. CP will then search for an improv-
ing solution, using the bounds inferred from the starting so-
lution. Additionally, the solver can explore the neighbour-
hood of the seed solution in attempts to find similar solu-
tions of higher quality, identifying high-impact variables set
by the warm-start and exploring the search space beneath
them while maintaining the ability to backtrack and investi-
gate completely different areas as well.

In this work, we take the highest quality solution found
by the temporal planner (from the standalone planner ex-
periments) and use it to warm-start CP. We allot CP the re-
maining runtime (from the time that temporal planning finds
its last solution until the time limit), allowing us to directly
compare the solution quality of the hybrid approach versus
the standalone planner.

6 Empirical Evaluation
6.1 Setup
Problem Instances We start with the previously studied
QCC problem benchmark set (Venturelli et al. 2017) that
compiles Quantum Approximate Optimization (QAOA) cir-
cuits (Farhi, Goldstone, and Gutmann. 2014) for MaxCut to
the architecture inspired by the Rigetti Coputing’s quantum
computer (Sete, Zeng, and Rigetti 2016) (refer to Figure 1).
Additionally:

• Most planners cannot solve |N | = 40 qubit problems. As
such, we study two problem sizes: |N | = 8 and |N | = 21.

• Through preliminary investigation, no meaningful differ-
ence was observed for the empirical evaluation between
90% and 100% qubit utilizations, so we conduct our eval-
uation solely on problems with 100% qubit utilization.

• Expansion: We solve each benchmark instance using one
of three problem variations: (1) the baseline problem, (2)
QCC-I, and (3) QCC-X.

In total, we document results from five temporal planners,
CP Optimizer, and our hybrid approach on nine sets of 50
problems each, for the total of 4,950 data points.

Software In addition to TFD (Eyerich, Mattmüller, and
Röger 2009), LPG (Gerevini, Saetti, and Serina 2003), and
SGPlan (Chen and Wah 2006), temporal planners used in
the previous work (Venturelli et al. 2017), we also include
results for two additional planners: CPT (Vidal and Geffner
2006) and POPF (Coles et al. 2010). CPT is an optimality-
focused planner that uses CP inference techniques in a
partial-order planning framework. POPF combines forward-
state-space search with the partial-order planning framework
to find flexible plans. We use the commercial software CP
Optimizer to represent and solve our CP model.6

6Experiments are implemented in C++ on an Intel Core i7-
2670QM with 8GB of RAM running Ubuntu 14.04 LTS Linux.
We use CP Optimizer version 12.6.3 single-threaded with default
search and extended NoOverlap inference (all other inference de-
fault). All planners, except CPT, used the same machine. CPT, due
to software issues, was run on a RedHat Linux 2.4Ghz machine
with 8GB RAM.
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Figure 2: a) Problem instance for |N | = 8 (using 7 qubits) for the QAOA-MaxCut model algorithm. Colored edges represent
p-s gate executions between corresponding quantum states. b)−e): Compilation plans obtained for the P = 1 problem instance
in (a). Clock cycles are on the horizontal axis and qubit locations are arranged on the vertical axis, sorted according to Figure 1.
Colored boxes represent executed p-s gates, and swap gates by white boxes with vertical lines. (b) LPG planner compilation for
QCC-I, where qubit state initialization is indicated by dashed lines. (d) LPG compilation for QCC-X: crosses identify disabled
regions due to crosstalk constraints. (c) and (e), respectively, show the improvements when CP uses (b), (d) as a warm-start.

Three of the planners tested (LPG, TFD, and POPF) are
anytime planners. These continue to return plans of gradu-
ally better quality until the alloted run-time is over. SGPlan
returns a single satisficing solution, often very quickly. CPT,
as designed, returns a single solution in the given run-time,
which it attempts to prove optimal. CP Optimizer is an any-
time solver and looks to improve solution quality over time.

6.2 Analysis
The results of our empirical analysis on the temporal plan-
ners, CP, and hybrid are summarized in Table 2.

Temporal Planning Overall, only LPG and POPF were
able to consistently find solutions for all of the problem sets.
CPT, a planner focusing on proofs of optimality, was able
to only return solutions on the two problem sets with the
smallest anticipated makespan values; this is not surprising
given that CPT works by setting a bound B on plan horizon,
increasing this value if no plan is found and tightening B if
a plan is found. This multi-step procedure tends to be more
time consuming as the optimal plan makespan increases.

SGPlan struggled with the newly introduced QCC-I, con-
sistently returning an internal error, and also failed one
QCC-X set. As it only returns a single satisficing solution
the solution quality of this planner is typically lower than
the other anytime planners. On problems for which SGPlan
is able to find a satisficing solution, it typically does so very
quickly (less than 2 seconds of runtime).

TFD was the best overall performer in the previous study
(Venturelli et al. 2017), but the two new variations lead to
totally opposite overall results. While it still performs very
well in QCC-X,7 it performs very poorly for QCC-I prob-
lem sets. The main reason for this is not clear, but it seems
initialization actions confused the heuristics of TFD.

7TFD returned invalid solutions for nine |N |=21, P1, QCC-
X problems, violating crosstalk constraints between related swap
gates. Hence 41/50 problems for this entry.

LPG and POPF perform the most consistently across most
of the benchmark sets; LPG is the only planner that solved
all 450 problems. POPF is the most consistent at finding
good quality solution across all variations and problem sizes
while LPG tends to do better in smaller problem sets but
worse in more complex cases.

Constraint Programming Overall, the stand-alone CP
approach is competitive with temporal planning in the three
smaller |N |=8,P1 problems sets, doing particularly well on
QCC and QCC-X. The crosstalk constraints within QCC-X
increase the scope of the NoOverlap constraints, enhancing
inference that the solver can perform on variable start times,
leading to strong performance on these smaller problems.
The QCC-I proved difficult for CP as the lack of initially
defined qubit states was more likely to lead the search away
from candidate solutions. The large number of optional tasks
incurred by larger problems overwhelm the approach and
lead to the poor overall performance, as evidenced by the
CP’s inability to find any solutions for some problem sets.

Hybrid Approach Across all problem classes, except for
the smallest problems where CPT was able to find proven
optimal solutions, the planning-CP hybrid always results in
better plans. A visualization of makespan improvement with
the hybrid method over LPG stand-alone is provided in Fig-
ure 2. In the figure, both CP solutions seem to have explored
the search space under the p-s task location variables as set
by the planning warm-start, resulting in similar, yet con-
densed, compilations.

Table 3 shows the average improvement across different
planners. Though the hybrid approach benefits all planners
on all problem sets, the level of improvement varies. The
approach consistently provides large performance boosts to
SGPlan. As discussed, the low solution quality and ample
time given to CP with a warm-start from SGPlan leads to
this large improvement. There is little consistency in per-
formance across the other planners (LPG, TFD, and POPF)
except that: (1) for the smallest problem size |N |=8, P1,



LPG TFD SGPlan POPF CPT CP
Alone Hybrid Alone Hybrid Alone Hybrid Alone Hybrid Alone Hybrid Alone

|N |=8, P1, QCC 0.93 (50) 0.95 (50) 0.87 (50) 0.93 (50) 0.63 (50) 0.92 (50) 0.83 (50) 0.85 (50) 1.00 (50†) N/A 0.91 (50)
|N |=8, P1, QCC-I 0.82 (50) 0.87 (50) 0.62 (2) 0.80 (2) Error N/A 0.80 (50) 0.82 (50) 1.00 (50/43†) 1.00 (50) 0.67 (42)
|N |=8, P1, QCC-X 0.70 (50) 0.95 (50) 0.91 (50) 0.96 (50) 0.61 (50) 0.94 (50) 0.77 (50) 0.79 (50) 0.00 (0) N/A 0.93 (50)

|N |=8, P2, QCC 0.79 (50) 0.87 (50) 0.91 (38)* 0.95 (38) 0.72 (50) 0.88 (50) 0.85 (50) 0.87 (50) 0.00 (0) N/A 0.78 (11)
|N |=8, P2, QCC-I 0.70 (50) 0.80 (50) 0.00 (0) N/A Error N/A 0.89 (50) 0.91 (50) 0.00 (0) N/A 0.00 (0)
|N |=8, P2, QCC-X 0.56 (50) 0.88 (50) 0.81 (50) 0.84 (50) Error N/A 0.67 (43) 0.78 (43) 0.00 (0) N/A 0.63 (46)

|N |=21, P1, QCC 0.82 (50) 0.86 (50) 0.61 (50) 0.72 (50) 0.64 (50) 0.72 (50) 0.92 (50) 0.94 (50) 0.00 (0) N/A 0.39 (41)
|N |=21, P1, QCC-I 0.61 (50) 0.63 (50) 0.00 (0) N/A Error N/A 0.96 (42) 0.99 (42) 0.00 (0) N/A 0.43 (7)
|N |=21, P1, QCC-X 0.40 (50) 0.71 (50) 0.70 (41)* 0.89 (41) 0.61 (50) 0.90 (50) 0.59 (19) 0.64 (19) 0.00 (0) N/A 0.00 (0)

Table 2: Plan score (max value of 1.0) using the formula employed by the international planning competition (IPC): for each in-
stance i, if the best-known makespan for i is Pi, then for a given solverX that returns a plan piX : Score(i,X) = Pi/Cmax(piX).
For a given 50-instance benchmark set, the score for each solver is the average over the instance scores for which a solution was
found by the solver. † indicates the instances were solved to proven optimality. * indicates some solutions found were deemed
infeasible (and thus not included). |N | = 8 problems are run for two minutes, and |N | = 21 problems for 10 minutes.

LPG TFD SGPlan POPF

|N |=8, P1, QCC 1.8% (13) 7.1% (30) 31.0% (50) 10.1% (42)
|N |=8, P1, QCC-I 5.9% (28) 22.8% (2) N/A 6.9% (26)
|N |=8, P1, QCC-X 26.7% (50) 6.2% (33) 35.3% (50) 19.6% (49)

|N |=8, P2, QCC 9.1% (41) 5.5% (26) 18.0% (50) 9.6% (45)
|N |=8, P2, QCC-I 12.2% (44) N/A N/A 10.3% (47)
|N |=8, P2, QCC-X 35.7% (49) 8.4% (44) N/A 26.2% (34)

|N |=21, P1, QCC 4.4% (31) 18.3% (42) 11.4% (44) 6.2% (39)
|N |=21, P1, QCC-I 2.7% (20) N/A N/A 3.8% (20)
|N |=21, P1, QCC-X 40.9% (47) 22.6% (36) 32.2% (50) 33.5% (19)

Table 3: Average makespan improvement and number of in-
stances that a positive improvement was observed (in brack-
ets) with the hybrid approach for each planner.

QCC improvement is small, likely due to already high qual-
ity planning solutions, and (2) for the most complex set
|N |=21, P1, QCC-X the improvement is consistently large.
In general, it seems the crosstalk constraints benefit the CP
approach while inhibiting temporal planning. Among all
solved problems, the number of problems that saw improve-
ments are consistently high across different planners and
problem sets.

7 Conclusions & Future Work
In this paper, we describe our recent investigation in us-
ing CP as an alternative to temporal planning to solve QCC
problems. Our empirical evaluation shows that while CP as
a stand-alone approach does not perform well when com-
pared against the current state-of-the-art temporal planners,
a hybrid of planning and CP, where CP is warm-started with
a solution found by temporal planning, out-performs both
planning and CP alone. Additionally, the newly introduced
variations QCC-I and QCC-X lead to a more diverse QCC-
based test benchmark for which different planning technolo-
gies performed vastly different across different problem sets.

Given these results, our work strengthens the message that
AI planning is indeed a very suitable technology to address
QCC challenges and clearly demonstrates the benefit of in-

tegrating it with OR methods for building the first effective
compilers of real-world quantum hardware.

Our proposed hybridization is only an initial investiga-
tion of how to best combine temporal planning and CP for
QCC problems. In a future work similar to (Beck, Feng, and
Watson 2011) we will analyze in-depth the performance of
the two components of our hybrid in relation to the prob-
lem classes in order to determine an adaptive schedule for
switching between temporal planning and CP.
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