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Topology optimization is one of the widely known branches among the structural optimiza-

tion, and it distinguishes itself by a large design domain and versatility. It can determine the

optimal design out of an infinite number of configurations, thereby drawing interest from both

industry and academia with regards to its applicability to additive manufacturing. However,

its implementation is often a daunting task for engineers in practice. One of the issues is

the programming effort required whenever the implementation requires any changes, ranging

from subtle tweaks to drastic changes in the problem definition, and the derivative computation

must be correspondingly updated after any change. The implementation, therefore, is not only

time-consuming but also repetitive and susceptible to human-induced errors. In this regard,

topology optimization implementations stand to benefit from reusability, ease of restructuring,

and modularity. In this work, we propose OpenMDAO, a computational framework for multi-

disciplinary design optimization (MDO), as a generic platform for topology optimization. Two

widely used topology optimization techniques—density-based and level-set—are implemented

as a demonstration. These techniques are implemented in a decomposed manner, with the

aid of the modular architecture of OpenMDAO as well as state-of-the-art numerical methods.

Variations on the density-based topology optimization approach are shown to demonstrate the

modularity and automation for derivative computation that OpenMDAO provides.
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SIMP = Solid Isotropic Material with Penalization

LSTO = Level Set Topology Optimization

λi = Lagrange multiplier for sensitivity of function i

ρ = element-wise material density

φ = signed distance function for level-set method

CFL = Courant-Frederichs-Lowy condition

XDSM = eXtended Design Structure Matrix

I. Introduction

Topology optimization is a numerical design method that computes an optimal structure for a specified objective

and constraint. The method is capable of handling a large number of design variables, and thus can compute the

optimal structural configuration from a large design space with minimal designer input.

Topology optimization methods can be classified into two categories based on the representation of the structural

topology. One is the density-based formulation where the problem is formulated as a material distribution problem and

the material densities are design variables. Typically, each element in the finite element mesh is separately parameterized

as in Solid Isotropic Material with Penalization (SIMP) [1] method, which is the most common approach. Another

category is the boundary-based formulation where the structure is defined by its boundary. The change of the structural

topology is realized by the direct movement of the boundary encompassing merge, split, and creation operations.

Its history can be traced back to shape optimization [2, 3], which is inspired by computational geometry [4]. The

introduction of the level-set method [5, 6] attracted much attention in recent years and is quickly becoming a viable

alternative to SIMP due to its lack of a need for post-processing. Both methods employ the finite element method (FEM)

as the backbone that computes the responses of the structure and the corresponding sensitivities with respect to the design

variables. Since FEM can solve diverse partial differential equations that range from elasticity [6, 7] to acoustics [8], it

is also possible to perform multidisciplinary topology optimization. In recent years, topology optimization has been

actively studied with Additive Manufacturing (AM) in mind, a novel manufacturing technique with far greater design

freedom when compared to the classical methods. AM offers small-scale manufacturing capability with micron-scale

resolution and multiple materials without additional costs, and leads to inherently multi-scale and multi-functional

structures.

In practice topology optimization implementations can be somewhat difficult to implement. One strategy to simplify

the implementation is the use of object-oriented programming (OOP) to create a modular code base with a high degree

of code reuse. This approach also helps a user easily change the constituent units of code and their organization within

the program. These OOP traits reduce the repetitive programming tasks that are not only time-consuming but also make
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the code susceptible to human error during the implementation.

We propose OpenMDAO, a computing framework for Multidisciplinary Design Optimization (MDO), as a generic

platform for topology optimization. This enables topology optimization to access a wide range of MDO methods for

coupling multiple disciplines, and it facilitates integration of multiple computational tools. First, OpenMDAO uses a

modular software architecture for the MDO problem, by which the model is configured into smaller computational units

that communicate to each other, and OpenMDAO automatically computes the total derivatives of the model from those

of the smaller units. Such an architecture is beneficial for restructurability with minimal effort. Moreover, OpenMDAO

is equipped with a large library of nonlinear and linear solvers as well as visualization utilities. Based on these attributes,

potential users can easily implement and reconfigure their optimization workflow, and easily share their modules and

ideas.

These properties are also beneficial to researchers who are new to topology optimization. Once the framework

is separated into smaller units of code and robustly programmed, external users can freely rearrange and tweak

these components. These traits distinguish the present work from the previous educational publications on topology

optimization [9, 10].

The first part of this paper defines the optimization problem and briefly describes the two topology optimization

schemes implemented in this work: SIMP topology optimization and level-set topology optimization (LSTO). For both,

we consider a linearly elastic compliance minimization problem. In the next section, the OpenMDAO implementations

of SIMP and LSTO are explained with design structure matrix diagrams, and numerical examples are presented. The last

part of the paper demonstrates an extension of the SIMP implementation to a third topology optimization formulation,

the parametric level set approach. This extension provides a practical demonstration of the benefits of modularity, as we

reuse existing components from the SIMP approach, add new components, and use OpenMDAO to integrate them and

compute their derivatives with minimal effort.

II. Theory

A. Optimization problem

Compliance minimization is a classical problem in topology optimization [1, 6, 9], and the optimization problem is

given by

min f (x, u) = u(x)T F =
∫
Ω

∇u(x) : E(x) : ∇u(x)dΩ

s.t .g(x) ≤ g∗
(1)

where Ω is the domain, f is the compliance of the structure, which is determined by design variable x and displacement

function u. g(x) is the material volume found within the structure, g∗ is the prescribed volume constraint, and Young’s

modulus E . Note that u is also a function of x because linear elasticity as a boundary value problem is assumed herein.
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In this work, we look at a 2D cantilevered plate for demonstrating the implementations of both topology optimization

methods. The design domain, boundary conditions, and the external loading are illustrated in Figure 1.

Fig. 1 The cantilevered plate for the compliance minimization problem. The dimensions of the design domain
(width W and height H), Young’s modulus (E) with Poisson ratio (v), and external force (F) are illustrated.

In this work, the length-to-width ratio (W/H) is fixed to 2, and the Young’s modulus E and Poisson ratio v are set to

1.0 and 0.3, respectively. Force F is applied in the −y direction with a value of 1 at the mid-point of the right edge.

A linear elasticity assumption is employed, and the computation of the design sensitivity d f
dx exploits the self-adjoint

characteristic of the compliance minimization problem. The constraint g(x), the ratio of the total amount of material

over the area of the whole domain, is set to be 40% (i.e. g∗ = 0.4). These optimization settings are fixed throughout this

work to simplify the verification of the numerical results and the demonstration of the reusability and the restructurability

of the current implementation. Note that design variable x that represent the structure varies depending on the type

of topology optimization method. In SIMP, discrete material density ρ is used and level-set method utilizes level set

function phi.

B. SIMP: Density-based method

In SIMP, the topology of the structure is explicitly described by the distribution of the discrete element-wise material

density ρ that parameterizes the material property. The material densities ρ for each element are the design variables of

SIMP, and therefore the number of design variables coincides with the number of elements. Due to its simplicity of

implementation, the SIMP method has been widely used [9, 11] for topology optimization. Without losing generality,

Eq. (1) can be reformulated as follows

min c(ρ, u) =
Ne∑
e

ρ
p
euTe k0

eue

s.t .
Ne∑
e

ρe ≤ G∗

s.t .K(ρ)u = F

s.t.0 ≤ ρe ≤ 1

(2)
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where p is a penalizing parameter, ue and ρe are the its discretized displacement and material density correspond to

element e, and k0
e is the stiffness matrix, provided that the element is filled with material (i.e. ρe = 1). A typical

workflow is described in many works[1, 9], and it is illustrated in Figure 2.

Fig. 2 An XDSM diagram of SIMP method

The simplest decomposition of SIMP consists of 5 modules: filter, penalization, finite element analysis, objective,

and constraint. The finite element analysis is a computational backbone of the SIMP method, as all inputs and outputs

of each module are present in the same discretized space. Whenever the material connectivity is required in the problem

definition, either density or sensitivity filter is required. In this diagram, the density filter is shown.

As shown in the diagram, the first step in the SIMP method is an applying density filter to the material distribution

ρi to generate locally uniform distribution ρ̄i . Then a filtered material density is penalized so that intermediate densities

(i.e. gray material) are removed. The penalization is a crucial step in obtaining a well-defined topological solution.

Without it, a converged solution is likely to contain gray areas that are open to interpretation during post-processing. In

this work, the penalization parameter p is fixed to 3. The material properties (i.e., Young’s modulus) are assumed to be

uniform within each element, and proportional to the specific material densities found on the element as

E = ρpE0 + (1 − ρp)Eε (3)

where E0 is the original modulus of the material and Eε = 10−6E0 is a fictitious stiffness, which is introduced to prevent

rank deficiency of the stiffness matrix and enforce nonzero sensitivity at the element. The objective and constraint

functions are computed based on these variables.

Recalling that gradient-based optimization is utilized in this work, the update of the solution requires the derivatives

of the objective function with respect to design variables. As there is a substantially higher number of design variables
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than governing equations, the adjoint method is employed for efficiency. Due to the self-adjoint characteristic of the

compliance minimization problem, the total derivative calculation is greatly simplified. The corresponding sensitivity

to the material density is

dc(ρ, u)
dρe

= −(pρp−1
e )uTe Ke(E(ρ))ue (4)

where ρ is a material density, u is a displacement vector, and K is a stiffness matrix. The subscript e refers the element

index found in the finite element mesh.

C. LSTO: level-set topology optimization

Level-set topology optimization (LSTO) differs from SIMP, as the structural domain is implicitly represented. An

advantage of LSTO over density-based optimization scheme is the resulting boundaries of the optimal solution can cut

an element and smooth boundaries are obtained in contrast to jagged-edge boundaries found in SIMP. In this work, we

implemented the LSTO method found in the reference [12].

For a given level set function φ(r) in the fixed grid space, the boundary is defined by its zero hypersurfaces

(Γ(r) : {r ∈ Ω|φ(r) = 0}. A signed distance function, a distance measure from the boundaries of the design domain, is

commonly used as a level set function, and it is implicitly updated by solving the Hamilton-Jacobi equation

Ûφ + ∇φ · ∂r
∂t
= Ûφ + Vn |∇φ| = 0 (5)

where t is the pseudo-time in which the level set function advects, and Vn is the velocity of advection, normal to the

structural boundary. An explicit integration method is often employed to solve the problem for the discretized space and

time domain. Equation (1) is linearized with respect to shape perturbations (i.e., shape derivatives) at the boundary

points.

min
∂ f (x)
∂Ωk

· ∆Ωk = ∆t
∫
Γ

SfVndΓ

s.t .
∂g

∂Ωk
· ∆Ωk = ∆t

∫
Γ

SgVndΓ ≤ −g∗k
(6)

where ∆Ωk is the update for the current domain at the k-th pseudo timestep, and Sf and SG each represent the shape

sensitivities for the objective and the constraint. The function change is now a function of the shape sensitivities and

normal velocities evaluated using boundary integrals.

In contrast to SIMP, the shape sensitivities are evaluated at the discretized boundary points, and the consistency and

the smoothness of the values are necessary to obtain the optimal solution with clear distinction of the boundary. The

consistent compliance sensitivities [6] are
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Sf = −
∫
Γ

ε(u) · E(ρ) · ε(u)dl

Sg = −1
(7)

where the weighted least squares method is employed based on sensitivities Sf and Sg evaluated at the point clouds. The

Gauss quadrature points are selected as the point of evaluation, and an Ersatz material model (i.e., E = E0ρ, where ρ is

an area fraction that is a ratio of materials presence (φ > 0) within each element) is employed. It is worth noting that the

sensitivity found in Eq. (7) can be reduced to Eq. (4) when the sensitivity is evaluated at the midpoint of each element

as it also exploits the self-adjoint trait of the given problem.

As suggested by Dunning et al., [7], the linearized equation (6) leads to Eq. (8) after the algebraic manipulations.

Detailed procedures also can be found in the recent literature [12].

∂[ f , g]
∂Ωk

· Ωk =

nb∑
z

∆tVnj[Sf , j, Sg, j]l j

= [Cf ,Cg] · Vn∆t ≡ [Cf ,Cg] · z

z(λ) = λ f Sf + λgSg

(8)

where subscript j indicates the index of the boundary points, and Cf and Cg refer the vectors obtained by boundary

integration of the corresponding sensitivities, while l refers the length segment. Normal velocity Vn is multiplied by the

t to produce advecting distance z that the boundary advects during given time, while z is assumed to be the sensitivities

multiplied by Lagrange multiplier λ. By using Eq. (8), Eq. (6) is then written as:

min Cf · z

s.t. Cg · z < g∗

s.t. zmin ≤ z ≤ zmax

(9)

where a bound for a distance vector [zmin, zmax] satisfies two criteria: (1) the advection must not go beyond the boundary

of the design domain, and (2) the distance cannot violate CFL (Courant-Frederichs-Lowy) condition. These set of

equations leads to the sub-optimization of the LSTO method, by which optimal distance for the function minimization is

obtained and remains within the range of constraints and bounds.

As a result, two sets of the optimization layers are separately dedicated to the Hamilton-Jacobi equation and the

sub-optimization, and shown in the XDSM diagram shown in Figure 3.
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Fig. 3 An XDSM diagram of LSTO

For a given signed distance function φ, the boundary points are obtained by using a marching square algorithm[4].

The positions of the boundary points and the length segments of the boundary l that represent discretized design and the

resulting boundary sensitivities Sf and Sg are the arguments of the sub-optimization.

In order to retain distance z within its bounds, the bounds of the multipliers λ are also computed based on the CFL

condition and the geometric limit of the movement (i.e., side limit [13]). These are the conservative move limits for

boundary advection. The sub-optimization problem (Eq. (9)) is then solved and the optimal distance z is computed as

its solution. These boundary distances are extended to level-set fixed grid within the narrow band[4], and the structure

is updated by solving the Hamilton-Jacobi equation. Furthermore, reinitialization of the function is required to satisfy

the |∇φ| = 1 condition as it is often violated after a few updates.

Note that the solution update scheme in LSTO requires time integration over pseudo time t, and involves sophisticated

numerical techniques such as the fast-marching method. Due to these traits, the first layer of the optimization found

in the LSTO is not benefited from the numerical solvers found in OpenMDAO. In this work, therefore, only the

sub-optimization step is exposed to the OpenMDAO, where the optimal advection velocity at each optimization steps is

computed. The outer part of the optimization, on the other hand, is solved externally by using numerical libraries for a

level set, such as the upwind scheme, fast marching methods, and the 5th order WENO [12, 14].

III. Implementations of topology optimization methods

A. OpenMDAO

OpenMDAO [15] is an MDO platform developed and maintained by researchers at NASA Glenn Research Center.

OpenMDAO is open-source and is written in Python, which is a language known for its ease of interfacing to compiled

languages such as C++ and Fortran. OpenMDAO has been used to solve MDO problems in satellite design [16], wind
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turbine design [15], aircraft design [17], and aircraft trajectory optimization [18].

OpenMDAO is unique among MDO frameworks because it is designed for gradient-based optimization, and assists

in the computation of derivatives. It uses the modular analysis and unified derivatives (MAUD) architecture [19]

to compute the global derivatives of the model given the partial derivatives of each smaller unit of code. MAUD

is a generalization of the adjoint method that unifies all existing methods for computing derivatives using a matrix

equation [20]. Like the adjoint method, MAUD has the property that the computational cost of computing a gradient is

independent of the number of design variables. MAUD uses parallel hierarchical solvers for solving the systems of

equations that arise in coupled simulations.

Fig. 4 Illustration of modularized architecture found in OpenMDAO. Three set of the layers are found at the
different hierarchies: Component, Group, and Problem.

The basic unit of code in an OpenMDAO model is the Component, where the computations take place during an

execution of OpenMDAO. It can be as comprehensive as a single discipline, but more often, it is a small function such

as the penalization equation found in the SIMP-based optimization. The Component object is defined by its variables

(inputs and outputs), the governing equation that computes the outputs for given inputs, and the partial derivatives that

are either specified by the user or approximated by the OpenMDAO using finite differences or the complex-step method.

Depending on the type of equation, a Component can be of either explicit or implicit type. For instance, a penalization

module is an explicit Component, whereas the computation of the displacement vector using linear elasticity is an

implicit one as the displacement u is a state variable defined implicitly by residual functions. In the latter example, u is

nonetheless an output variable that the Component is responsible for computing.

A Group is located above the Component objects in the model hierarchy tree and contains a combination of

Component objects and other Group objects. It is a common practice to assign each individual discipline its own Group,
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and its algorithms are realized by placing Components within the Group and arranging them in a logical order.

The configuration of the Group object is greatly simplified thanks to the MAUD architecture in OpenMDAO. First

of all, there is a salient modularity found during the process due to the encapsulation of the Component object; only the

arguments of the Components are exposed to the Group layer, while the others are remain hidden. Moreover, the total

derivative is automatically computed as long as the partial derivatives of the constituting Components are specified.

Such capability is especially useful in the presence of the implicit Component as the adjoint method is internally evoked

in OpenMDAO without resorting to the explicit calculation.

Such a modular structure leads to both restructurability and reusability. Once the Component object is programmed

and encapsulated, a further modification is unnecessary as long as the governing equations remain intact (reusability).

Also, these modules are freely arranged within the Group layer and therefore reformatting of the information requires

only changes in connectivity between the Components, and the required changes to the global derivative are applied

automatically (easy restructurability). These two traits are beneficial as these significantly reduce repetitive programming

and user-induced error.

The model is thus a combination of Group and Component objects, arranged in a hierarchy tree. The leaves of this

tree are comprised of Component objects and all other nodes in the tree are Group objects. The model is contained

within the Problem object, which also contains a Driver object. The Driver is responsible for execution of the model and

for computation of the model’s derivatives using MAUD. It is typically the optimization algorithm. For the present

study, the Driver is an SLSQP optimizer with a tolerance of 10−9.

In this work, topology optimization is deemed as the one discipline of our MDO problem, and a single Group object

is therefore assigned to each optimization method (e.g., SIMP, LSTO). In our case, there are no other Group objects in

the model. Therefore, each Group is comprised solely of Component objects, including the finite element analysis and

auxiliary computations such as the density filter found in the SIMP method. Figures 2 and 3 explain the topological

optimization workflows visually using design structure matrix and hierarchy diagrams. Each Component is marked by

the blue box, and its inputs (pink-colored) and outputs (either gray- or orange-colored) exposed to Group layer are also

specified. An orange-colored output is an unknown from implicit function, while gray-colored one is an explicit output.

Note that dependencies are marked by black off-diagonal squares.

B. SIMP

The visualization of SIMP is shown in Figure 5, where the Components and their connectivity in the SIMP Group

are illustrated.

The workflow of the SIMP method is composed of six Components: specifying independent variables (input_comp),

density filtering ( f ilter_comp), penalization (penalization_comp), linear elasticity (states_comp), the objective

function (compliance_comp), and the constraint function (weight_comp). Note that this configuration is analogous to
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Fig. 5 Design structure matrix of SIMP method.

the modules and their connectivities found in the corresponding XDSM diagram (Figure 2). For example, displacement

(disp) and forces ( f orces) are inputs to the compliance_comp, of which output is a compliance.

After preprocessing that includes discretization and specifying boundary conditions, the independent inputs are

specified for the given finite element mesh: discrete material density dvs as a design variable and external force vector

f orces. Design variables first go through a simple density filter, a low-pass filter that removes a checkerboard pattern

often found within the solution:

ρ̂ =
∑
j

wi j ρj, wi j =
R − d(i, j)∑

k∈Ni
(R − d(i, k)) i f j ∈ Ni (10)

where ρ̄ is a filtered material density found at the element i, and wi j is a conic weight based on the distance d between

elements i and j. A Group Ni refers to the list of the neighboring elements of element i, within a radius R. Although

the filtering is not visible in describing XDSM of SIMP method (Figure 3), it is commonly employed for a stable

convergence in SIMP. Choosing the best filter, however, relies heavily on the heuristics; therefore, iterative testing is

often required [21]. Again, the restructurability of the present approach reduces the effort required.

The filtered design variables are then penalized with constant p. The computed material density ρ̄p (multipliers)

leads to parameterized material stiffness (Eq. (3)) and global stiffness matrix. The displacement vector states is a

state variable by solving force equivalence (R(ρ, u) = K(ρ)u − F = 0). Within the state_comp Component, the partial

derivatives of the residual R with respect to all inputs are computed, which are later used by OpenMDAO in the adjoint
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method. This is another advantage of using OpenMDAO as a framework of topology optimization as it greatly simplifies

the calculation of the global gradient.

Fig. 6 Numerical results of SIMP. (a) a convergence profile with initial configuration where the number of
meshes to each direction are specified (b) a material configuration, area fraction (g) and compliance (f) found

during at the 4th , 45th , and 200th iterations.

Figure 6(a) shows the convergence graph of the compliance f (ρ), which is a objective function, the area fraction

g, and the initial configuration of the design domain. The size of the rectangular design domain is prescribed to 160

× 80 (length × width), and the domain is discretized with 80 × 40 quadratic elements. The initial material densities

are uniformly set to 0.5, by which the constraint is mildly violated. According to the convergence graph, a constraint

(g(ρ) < 0.4) is always satisfied after 5th iteration and the norm of the changes of the compliance is smaller than 10−6

after 48th iteration. However, the iteration continues until the 200th iteration because of the small convergence criteria

(∆ f (ρ, u) < 10−9). In Figure 6(b), the final structural topology is nearly obtained. Note that intermediate densities found

in the early iterations are penalized so that the solutions at the later iterations do not exhibit the intermediate densities.

C. LSTO

As described in its XDSM diagram (Figure 3), LSTO is composed of two layers: (1) an update of the level-set

function achieved by solving on Hamilton-Jacobi equation on the domain boundary, and (2) a sub-optimization, by

which the optimal advection distance at each iteration is calculated. As mentioned earlier, only the sub-optimization step

in Eq. (9) is implemented within OpenMDAO. On the other hand, the pre-processing operations and the post-processing

operations, such as updating and extracting the design, are separately accomplished outside of OpenMDAO.

The operations prior to sub-optimization consist of initializing the level-set properties and execution of the finite
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element analysis. A signed distance function is firstly initialized, and the geometric properties of the structure, which

includes the location of the boundary points, length segments, and side limits of the boundary movement, are extracted

by external level-set libraries based on Ref. [13]. The structure in the finite element domain is represented by the Ersatz

material model, and the boundary conditions are assumed to be constant during the iteration. As a result, the sensitivities

Sf and Sg evaluated at the boundary points and the geometric properties are obtained, based on which the optimal

distances at the structural boundaries are calculated through sub-optimization. The post-processing operations update

the level set function based on the calculated distance. The given distances z at the boundary points are first extended to

the level-set fixed grid using the 5th order WENO, and the signed distance function is updated the fast marching scheme.

The detailed description of the sub-optimization step other than pre-processing or post-processing operations, are

found in the design structure matrix of the sub-optimization shown in Figure 7.

Fig. 7 Design structure matrix of sub-optimization found in LSTO

The workflow of the sub-optimization of the LSTO is composed of 6 Components. The first input_comp Component

specifies the 4 independent variables: Lagrange multipliers (lambdas) as design variables, length segments for boundary

integral (segments), sensitivities with respect to the objective and constraints (sensitivities), and the indices of the

active nodes (active_ids). Note that not all of nodes in the level-set grid are active during the iteration. For example, the

nodes belonging to the domain boundary or non-designable regions and their level-set values remain fixed to their initial

value. Filtering the values at active boundary points (active_comp) is, therefore, a necessary step in order to reduce the

number of degree of freedoms. The subsequent Component computes boundary-integrated values (integ_comp) and its

corresponding advection distances (distance_comp) based on Eq. (8). It is worth pointing out that a finite difference

scheme is inevitably used to estimate the partial derivatives of the distances with respect to λ because the distances are

not linear with respect to the input as the side limit and the CFL condition are possibly violated when the distances are
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linearized [7]. Therefore, a numerical differentiation scheme provided by OpenMDAO is utilized in the Component,

which also demonstrates the efficiency and flexibility in practical implementations. The Components that follow are

dedicated to the objective function (objective_comp) and constraint function (constraint_comp) based on Eq. (9).

The resulting advection velocity is expected to be optimal for compliance minimization, while satisfying the constraints.

Fig. 8 Numerical results of LSTO. (a) a convergence profile with initial configuration where size (Lxy) and
the number of meshes (Exy) to each direction are specified (b) a material configuration, area fraction (G) and

compliance (c) found during at the 30th , 80th , and 200th iterations.

Figure 8 shows a set of results and the convergence graph for the same cantilevered beam problem solved previously

with SIMP. As the hole-creation method [14] is not employed herein, the initial design domain has seeded holes. Both

the compliance and constraint values exhibit a smooth convergence as reported in the literature [7], which is in contrast

to SIMP example. A topology similar to SIMP is found in the converged optimal solution, although with more holes.

IV. Extensions
In addition to the unique architecture of OpenMDAO, which enhances the modularity of the optimization schemes

and the ease of the implementations, using OpenMDAO as a topology optimization platform is also advantageous in

extending or modifying the existing implementations. In the present section, we demonstrate the ease of restructuring

and the reusability of the modules by example.

A. Flexible arrangement of the module

The restructurability of the program is demonstrated by rearranging the order of the density filter Component with

respect to other Components. Thanks to the encapsulation of the Component object, minimal changes are required, in
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the Group layer only. This is in contrasts to the topology optimization programs such as the minimalistic educational

implementations [9]. No matter how simple the program might be, it is still true that small tweaks such as the removal

of the filter require re-programming of the code; not only the functions but also the sensitivities must be changed

accordingly.

One of the possible tweaks to the configuration are found in the Figure 9, where the corresponding design structure

matrix and code snippet are presented.

Fig. 9 A demonstration of restructurability. (a) the design structure matrix of the SIMP method, where the
filter object is rearranged with respect to that of the penalization step, and (b) a code snippet for the

reconfiguration that exemplifies the easy reconfiguration; commented commands are marked by blue and
corresponding changes are marked by red.

When compared with the design structure matrix of SIMP (Figure 5), the Component object for the density filter

( f ilter_comp) is shown to be rearranged relative to the penalization filter (penalization_comp) (Figure 9(a)). The

code snippet that realizes the rearrangement is also shown in Figure 9(b). The change of the code is proven to be

minimal as the reconnection of the inputs and outputs within the Group object is the only required modification, thanks

to the connect member function of the Group object and the thorough encapsulation of the Component object. Even

though the whole code is not shown herein, one may easily see how the removal of the filter can be realized. It is

worth mentioning that these two tweaks are presented only to succinctly demonstrate the possible extensions, and these

extensions are not necessarily typical in the SIMP method; however, this example is in line with reducing the repetitive

15



programming required in selecting the type of weight of the filter.

Fig. 10 Optimal solutions where the filter object is (a) rearranged or (b) removed.

The numerical results are shown in Figure 10. As one may expect, either rearranging (Figure 10(a)) or removal

(Figure 10(b)) of the existing filter each saliently generates an intermediate density or a checkerboard pattern in the

converged solutions. This example also exhibits the educational benefits, as an effect of the filter as a way to remove the

ill-posedness of the problem is demonstrated without the drastic changes of the code.

B. Parameterized level-set topology optimization

The reusability of the modules is also exemplified by extending the present Components to a new topology

optimization formulation that bears similarities to the parameterized level-set topology optimization approach [5, 22, 23].

This method is, in essence, a density-based approach, but the densities are parametrized using a level set function

that implicitly represents the boundary. Instead of tracking the boundary directly, the value of this function is used

to control the densities in the elements, using a Heaviside function to map to the (0, 1) interval and SIMP-type

penalization to discourage intermediate densities. Further investigation is necessary to explore the potential of this

method as a new approach for topology optimization, but our goal here is to highlight that the use of OpenMDAO as a

topology optimization platform facilitated the development of this approach through reusability and restructurability.

As shown in Figure 11, many Components from SIMP are reused, including the implicit Component that computes

the displacements using linear elasticity (states_comp), the penalization Component (penalizaion_comp), and the

objective (objective_comp) and constraint function (weight_comp) Components.

In this scheme, design variables are the localized values of the regularly spaced control points, by which a

hypersurface is constructed via a parametric mapping using B-splines (parametrization_comp). The generated surface

is then filtered into discrete values bound to (0, 1) by passing them into an analytic Heaviside function (heaviside_comp):

the hyperbolic tangent function. The filtered values are interpreted as a material density (averaging_comp); if their

spatial size coincides to that of a finite element mesh, as in the present case, the SIMP module without a filter can be

reused for the remaining computation.

The numerical results are presented in Figure 12. Although the results show oscillations in the boundary, they

are sufficient to demonstrate that the optimal topology computed out of the present scheme and its compliance value

are comparable to those of SIMP. We note that the reusability demonstrated herein can enhance the productivity in

implementation, as new ideas or different modules can be quickly implemented without repeated programming once the
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Fig. 11 Design structure matrix of the parametric level-set approach for topology optimization.

Fig. 12 Numerical results computed using the parametric level-set approach for topology optimization: (a)
the convergence profile with the initial specifications same as in SIMP (b) the material configuration, area

fraction (G) and compliance (c) at the 4th , 17th , and 90th iterations.

initial library is in place.

V. Conclusion
Topology optimization is a structural design method capable of computing the optimal layout among a large number

of candidates. There is ongoing research in extending it to multiscale or multidisciplinary applications; however, its

potential is not fully exploited due to the non-technical problems associated with the implementation time and effort.

This is not only inefficient but also makes the program prone to human-induced errors.

In this work, we incorporate topology optimization into OpenMDAO, an computational framework for MDO. The
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primary benefit of using OpenMDAO comes from its modular architecture. By decomposing each topology optimization

method into Components, the programming becomes more object-oriented and the derivatives across the multiple

Components are automatically calculated. Also, the workflow can be easily visualized as connectivities between

Components. Another benefit is easy application of standard nonlinear and linear solvers available in OpenMDAO. We

demonstrate these benefits using the two most widely used topology optimization methods, SIMP and the level-set

method. We also demonstrate the extensibility by modifying the SIMP implementation to perform parameterized

level-set topology optimization, which is a third method. The modular approach enables this modification with minimal

additional programming effort where most of the existing Components are reused.

The authors expect the current work to be applied to the different physics as the required change is minimal when

compared with using approaches [9]. Moreover, OpenMDAO’s suite of optimization methods and utilities potentially

benefits in educating and promoting the topology optimization strategies to researchers in other disciplines.
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