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In 2017, the James Webb Space Telescope (JWST) underwent functional testing and 

optical metrology verification of the combined Optical Telescope Element and Integrated 

Science Instrument Module (OTIS) under cryogenic vacuum conditions in Chamber A at the 

Johnson Space Center. Maintaining flight-like thermal boundary conditions was a critical 

requirement for optical testing and required unique and challenging Ground Support 

Equipment (GSE) design solutions. Two such GSE systems, the Integrated Science Instrument 

Module (ISIM) Precool Straps and the Hardpoint Struts were direct conduction interfaces to 

the flight hardware. Hardware safety during cooldown required detailed design of their 

conductivity, and thermal balance testing required “zero-Q” (0-Q) heater implementation to 

bring the heat flow to zero, thereby cutting off these non-flight conductive links after operating 

temperatures were achieved. This paper describes the design considerations and approach 

implemented to achieve the required flight hardware cool down and return to ambient 

conditions, ensure flight hardware safety, and minimize the non-flight-like heat flows to or 

from the observatory during cryo-stable testing. 

Nomenclature 

A = area  

e = emissivity  

k = thermal conductivity 

L = length 

Q = heat rate 

T = temperature 

σ            = Stefan-Boltzmann constant 

0-Q = Zero-Q (i.e. no heat flow) 

ADIR = Aft Deployable ISIM Radiator 

BSF       = Backplane Support Fixture  

DSERS  = Deep Space Environmental Radiative Sink 

E2E = End-to-End 

FGS = Fine Guidance Sensor 

FIR = Fixed ISIM Radiator 

GHe = Gaseous Helium 

GSE = Ground Support Equipment 

HOSS = Hardpoint Offloader Support System 

ISIM = Integrated Science Instrument   

     Module 

JWST = James Webb Space Telescope 

LN2 = Liquid Nitrogen 

MIRI = Mid Infrared Instrument 

MLI = Multi-layer Insulation 

MSA = Microshutter Array 

NIRCam = Near Infrared Camera 

NIRSpecFPA  = Near-Infrared Spectrograph Focal  

     Plane 

NIRSpec OA  = Near-Infrared Spectrograph Optical      

     Assembly 

OTIS = Optical Telescope Element and    

     Integrated Science Instruments    

     Module 

STE = Specialized Test Equipment 

STOP = Strut Top (sensor location) 

 

I. Introduction 

he James Webb Space Telescope completed its cryogenic test late in 2017, and is now in final integration with 

the spacecraft bus and sunshield in preparation for launch. This was the final cryogenic-vacuum test of the Optical 

Telescope Element and Integrated Science Instruments Module (OTIS) and the critical objective was to verify the 

OTIS-level requirements in a flight-like environment. Figure 1 shows the test configuration of OTIS and several GSE 
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subsystems in the test chamber. The thermal 

objectives for this test were to verify the 

flight hardware workmanship of the flight 

hardware and to collect thermal balance test 

data to validate the OTIS thermal model. For 

this thermal balance condition, a flight-like 

environment was required. Chamber A at 

Johnson Space Center was used to simulate 

the space environment of the telescope in 

flight. Chamber A supplies helium gas 

(GHe) to cool its high emissivity shrouds to 

simulate space as well as Deep Space 

Environmental Radiative Sinks (DSERS), 

and additional GHe lines for dedicated 

cooling of other specialized GSE. 

Two meaningful differences between 

flight and test are the presence of Earth 

gravity and the budget impacts of test time.  

For a cryogenic vacuum test, the Ground 

Support Equipment (GSE) required to 

support the unit under test in a gravity 

condition can create a very different thermal 

boundary condition at the attachment 

locations. Depending n the objectives at each 

interface, the interfacing GSE could be 

designed as a high conduction path to cool 

the test article quickly, accelerating the 

testing schedule, or a low conduction path to 

keep heat flows and the structure temperature more flight-like. For the JWST OTIS test, the hardpoint struts and ISIM 

pre-cool straps were carefully designed to provide a balance between these two functions. Both of these thermal 

interfaces were designed with active control systems to reduce heat leaks to negligible quantities, to effectively zero 

(0-Q). This control helped manage payload temperatures through critical test phases, without compromising the test 

schedule through a combination of material selection, hardware geometry, heater control, and temperature 

measurement precision. 

The 0-Q function of these GSE systems was essential to the success of the OTIS test thermal balance objectives: 

to verify system thermal workmanship, to provide test data to validate the thermal model, and to verify the science 

instrument heat loads within 10% of the model predictions. During thermal balance, the flight hardware was required 

to be in the operating temperature range, with small rate of change for both temperature and heat rate. To accomplish 

this quiescent test phase, the GSE interfaces needed to have heat flow error and stability down to values of single-

digit milliwatts. 

 This paper provides design insight and test results discussion for the hardpoint struts and ISIM pre-cool straps; 

two of the more complicated thermal/mechanical interfaces to the flight hardware. Each system had challenging 

functional requirements that drove the hardware design and the thermal control to meet the optical, thermal, and 

schedule objectives of the OTIS test.  

II. Hardpoint Struts 

OTIS was supported on the Hardpoint Offloader Support Subsystem (HOSS) by six carbon fiber composite struts 

with MP35N flexures at the ends. The struts were arranged in a pseudo-kinematic configuration with two pairs of 

struts in a bipod arrangement on the -V3 end of the telescope and two struts in a monopod arrangement on the +V3 

end, as shown in Figure 2. The mechanical connection to the flight hardware created a thermal path that only existed 

in the test configuration. Careful design of the hardpoint struts and flexures made them relatively low conduction, 

however, the remaining heat flow from the test article to the support structure would have created a non-flight-like 

gradient in the structure without further heat management.  

 
Figure 1. OTIS test configuration. 
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The Hardpoint struts were designed to be 

extremely low conduction, also required 

augmentation to achieve the 2 mW (monopod 

struts) or 6 mW (bipod struts) heat leak required 

by the OTIS thermal test team. These 

requirements were applicable during the thermal 

balance tests. Within the +/- 6mW and +/- 2mW 

heat flow requirements, the OTIS thermal test 

team made an operational request that the heat 

flow was to be controlled as close as possible to 0 

in the positive direction, meaning heat would only 

be flowing out of the payload and down the struts 

to the HOSS, rather than from the GSE to the 

payload. To provide this control, heater blocks 

containing cartridge heaters were designed to 

clamp to the bottom of each strut tube, shown in 

Figure 3. These heaters were termed 0-Q heaters 

as they were designed to heat the bottom of the 

strut to a temperature approximately equal to the 

saver plate, creating a zero heat rate (0-Q) 

interface. 

In addition to the active control provided by the 0-Q system, the struts were also covered with 25-layer multi-layer 

insulation (MLI) blankets from the base of the strut at the HOSS interface up to the saver plate. This blanket isolated 

the struts from the surrounding radiative environment, which may confound the 0-Q system and induce non-flight-

like heat flows in the strut. 

The 0-Q heater itself faced several mechanical 

challenges. To reliably transfer heat from the 

heater cartridge to the strut, the interface needed 

to maintain clamping pressure at all times without 

inducing extra stress in the composite strut as the 

temperature changes. The strut locations and the 

heater design are shown Figure 2 and Figure 3. 

The heater-strut interface is a series of aluminum 

fingers that are clamped by a spring-loaded clamp. 

This arrangement ensures that clamp load is 

maintained as the composite strut and aluminum 

heater shrink at different rates while cooling. 

Aluminum tape was applied around the strut 

before installing the heater assembly to act as a 

thermal interface material and protect the 

composite strut outer resin layer from scratches. 

A. Calculating Heat Flow 

The heat flow into the payload was calculated across the flexure at the top of the strut, using the Strut Top sensor 

(STOP) and the saver plate sensor (SAVER_P) shown in Figure 4. This location was chosen to perform the heat flow 

calculation against requirements due to its discrete conduction path and small radiative area, which limits the error in 

the heat flow calculation caused by heat loss or gain in the flexure between the sensors, and its proximity to the 

telescope. The heat flow is calculated as: 

 𝑄 =  
𝑘𝐴

𝐿
(𝑇𝑆𝑎𝑣𝑒𝑟 − 𝑇𝑆𝑇𝑂𝑃)  (1) 

 
Figure 3. 0-Q Heater assembly. 

 

 
Figure 2. Hardpoint strut assemblies in OTIS 

configuration. 
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In the above equation, k is the thermal 

conductivity of the flexure as a function of 

the average temperature of the flexure. The 
𝐴

𝐿
 

term is a constant determined from the 

mechanical drawing for the flexure. 𝑇𝑆𝑎𝑣𝑒𝑟  is 

the temperature of the saver plate as 

calculated by the average of the primary and 

redundant temperature sensors. 𝑇𝑆𝑇𝑂𝑃  is the 

temperature of the top of the strut. 

This heat flow calculation is 

conservative, because while the temperature 

sensors are located on the saver plate and 

composite tube, Equation (1) uses only the 

flexure conductivity. Figure 5 illustrates the 

flexure (in green) and the difference between 

the actual sensor locations and the assumed 

sensor locations used in the heat flow 

calculation. Equation (1) ignores the 

additional thermal resistances of the bonding 

adhesives, fittings, threaded connections, 

and contact resistances between components. 

On the lower end of the flexure, heat must 

conduct axially through the strut, then 

diametrically through the composite strut body and the threaded 

insert that accepts the flexure. On the payload side of the flexure, 

heat must conduct along the invar saver plate then through the 

spherical flexure interface before it reaches the assumed sensor 

location. 

When MLI blankets are very thick, they have the potential to act 

as parallel heat paths to add to the conduction across an interface. In 

this thermally-sensitive design, a thermal short across the flexure to 

the interface would make the heat flow calculation incorrect, and 

yield lower values than reality. To mitigate this potential heat path, 

the strut blankets were placed such that they shielded the strut 

flexure, but stopped short of the saver plate to ensure there was no 

contact to neither the saver plate nor flexure, and could not be a 

conductive path. Additionally, a gap between the inner layer of the 

blanket and the strut can result in “tunneling” of radiated energy 

axially along the tube. To reduce tunneling risk, the inner layer of 

MLI was bare Kapton which absorbs the axial radiated heat transfer. 

B. Cooldown and Cryo-stability 

The saver plates and struts were allowed to passively cool during 

cooldown with the assistance of the conduction path through the 

GSE strut. The 0-Q heaters were activated once the monopod saver 

plates reached 65K, on 8/5. Critical thermal distortion testing was in 

progress when the bipod saver plates reached 65K, so the 0-Q 

activation was delayed until 8/12, when the optical test completed. 

After the 0-Q heaters were activated and the conduction path along the strut removed, the saver plates isothermalized 

with the flight Backplane Support Fixture (BSF) structure and experienced a minor increase in temperature. For the 

duration of cooldown after 0-Q activation and cryo-stability the saver plates were cooled along with the BSF structure. 

Figure 6 shows the activation and tuning of the monopod (MHP) and bipod (BHP) strut 0-Q system. The 0-Q 

control was semi-automated, the test set computer set the heater setpoint based on a user supplied offset from the 

current Saver Plate temperature every 2 minutes. This offset was used to compensate for the gradient along the strut 

  

Figure 4. Hardpoint Strut and 0-Q Assembly Telemetry 

Locations. 

 
Figure 5. Strut-Saver Plate Flexure and 

sensor locations 
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length from the top flexure location to the heater location at the bottom of the strut. At the start of the 0-Q process, the 

initial offset was chosen based on data from the Thermal Pathfinder development test and the strut gradients at the 

time. A conservative estimate of -8K offset was chosen for all the Bipod struts, this left room for at least one offset 

adjustment to be made without fear of overshooting the saver plate. Once the initial -8K offset was sufficiently stable, 

the offset was changed to -5 for all the Bipods. After stabilizing, the temperature gradient across the strut flexure was 

calculated for both the -8 and the -5 offsets. A linear fit was made for each pair of points, to estimate a heater offset 

that would drive the flexure gradient to zero. Given this estimate, the next offsets for each strut were chosen to land 

on the trend line at approximately 1/3 of the current measured flexure gradient. This process was repeated several 

times until the flexure gradient was within the acceptable range as defined by the heat flow requirements. These 

adjustments to the offset are apparent when comparing the number of steps required to reach the specification limits 

between the monopod struts and bipod struts in Figure 6. 

Once the heat flow was stable and within requirements, changes in heat flow due to activities outside of the strut-

saver plate system such as operation of warm optical equipment were managed by the thermal engineer using small 

changes in offset based on previous change data and engineering judgement. 

 

 
Figure 6. Hardpoint struts heat flow during 0-Q tuning for bipods (BHP) 1-4 and monopods (MHP) 1-2. 

 

III. Precool Straps 

A significant difference between the flight and testing environments was the cooldown timeline. After the 

hardware temperatures cool below 100K, the radiative heat transfer off the surfaces greatly diminishes, due to the T4 

term in the heat transfer equation: 

 𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑒𝜎𝐴(𝑇Radiator
4 − 𝑇Space

4 ) (2) 

Figure 7 shows a representation of the drop-off in the contribution to the heat flux as the temperature drops down 

below 100K. At that point, the heat contribution is 98% less than at 300K. In the flight condition, this is not a concern 

due to the time it takes for the observatory to reach its L2 destination. However, for a thermal vacuum test, an 

accelerated cooldown was desired to optimize schedule and cost. This helps to reinforce the point that some 

contribution of conduction, even if it is small at room temperature, can become a significant mode of heat transfer at 

cryogenic temperatures. The science instruments are nested and thermally isolated behind the primary mirror array, 

and are thermally coupled to cryogenic radiators with a view to space. In the OTIS test, DSERS were used to simulate 
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this space view. As the temperatures decreased, the 

radiators heat rejection decreased, with the 

temperature rate slowing down dramatically before 

reaching the approximate target temperature of 40 

K. The ISIM pre-cool straps are a GSE subsystem 

that was used to assist the cooldown as the radiative 

mode of heat transfer became ineffective by using a 

GHe flow line as a cold sink. 

As the instruments reached their target 

temperatures, heaters on the pre-cool strap 

assemblies were used to prevent the heat from 

continuing to flow down through the strap by 

warming the strap to eliminate the temperature 

gradient. When this temperature gradient is reduced, 

the heat conduction is stopped and thereby “zeroed 

the Q.” 

The pre-cool straps conductively interface at one end to the DSERS panels, a high emissivity GSE radiator heat 

sink for OTIS which are shown in Figure 1. These DSERS panels are actively cooled by GHE and act primarily as a 

heat sink for the ISIM radiators, but also support the pre-cool strap assemblies. The other ends of the pre-cool straps 

attach to the radiator end of the ISIM heat strap. Attachment features for the pre-cool straps were baselined into the 

flight strap design early in the program to accommodate the pre-cool concept anticipated at OTIS. The design is 

common across all 5 pre-cool straps, irrespective of the instrument each attaches to. These instruments are the 

NIRCam, NIRSpec FPA, NIRSpec OA, FGS and MIRI. Figure 8 (a) shows an OTIS view which includes the 

Backplane Support Fixture (BSF), ISIM frame, Fixed ISIM Radiator (FIR), and the Aft Deployable ISIM Radiator 

(ADIR). Figure 8 (b) shows the NIRSpec FPA and FGS 

cooling blocks, with the pre-cool strap interface area 

indicated by the dashed lines. Three of the pre-cool 

straps interface to the straps on the FIR radiator and are 

supported by the +V3 DSERS panel, and two of the 

pre-cool straps interface to the straps on the ADIR 

radiator and are supported by the ADIR DSERS panel. 

The pre-cool strap assembly attached to the flight 

locations by a flexible, high purity aluminum strap.  

The design was required to accommodate the relative 

motion between OTIS suspended in the chamber for 

optical testing and the fixed DSERS, to provide 

vibration isolation, as well as provide conductance to 

the 0-Q heater and the heat sink. On the other end (GSE 

side) of the flexible strap, the pre-cool mount attached 

to the backside of the DSERS panels which acted as a 

sink to GHe. The pre-cool strap assembly components 

are shown in Figure 9. The flexible strap was bolted to 

a stainless steel heater connector plate (pink), which 

was connected to the 0-Q cartridge heaters, which 

served as a prime and redundant heat source. The 0-Q 

heater connected to the DSERS panel by a heater 

isolator (yellow), a stainless steel support which 

ensured positive heater control. The supplemental 

cooling line (blue) was welded to a stainless steel plate 

(green), and served as the primary cold sink for the heat 

flow from ISIM during test cooldown only. A stainless 

steel heat throttle (gray) was designed to ensure the 

proper conduction path from the GHe line to the 

flexible strap, which balanced the goals of effective 

heat transfer for cooldown, while keeping parasitic heat 

 
Figure 7. Potential radiative energy versus 

temperature. 

 

 
 (a) 

 
 (b) 

Figure 8. (a) OTIS view with flight heat straps 

highlighted and (b) interface locations outlined. 
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losses low during the 0-Q mode at cryo-stability. 

The GHe plate and tubing was supported off the 

DSERS panel by a low conduction G10 isolator 

(orange). To cut down on the radiative heat loss 

from the assembly, both the DSERS mounted 

components as well as the flexible strap were 

wrapped in a VDA surface finish Single Layer 

Insulation (SLI). 

All five pre-cool straps are supplied with GHe 

through the JSC facility Zone 8, with flow being 

sequential through NIRCam, NIRSpec FPA, 

NIRSpec OA, FGS, and to MIRI. The 0-Q 

function of the straps was performed by shutting 

down the GHe flow, and using the 0-Q heater to 

drive the gradient across the flexible strap to zero. 

This gradient was measured by the “interface” 

temperature on the flexible strap at the end block 

connected to the flight radiator, minus the 

“junction” temperature of the flexible strap end 

block connected to the heater connector plate. The 

pre-cool strap design, with both heater and cold 

sink components allowed for it to remove heat, 

add heat, and cut off heat flow to the flight 

radiators. 

A. Cooldown Performance 

The cooldown approach for the pre-cool straps was to passively cool down without GHe flowing until the ISIM 

instruments cooled to below the contamination sensitive temperature range, which is <160K. GHe flow to the pre-

cool straps was started on 7/24/2017, so that the instruments could be assisted in the cooldown by the conductive link 

from the pre-cool straps. While the pre-cool straps were cooling, the ISIM instrument benches temperatures were 

monitored as they cooled to the nominal operating temperatures. As each instrument bench temperature reached its 

contamination-constrained temperature or operating temperature, the pre-cool strap 0-Q heaters were powered to drive 

the temperature gradient across the flexible strap to zero. To do this, the automated heater control was set up for the 

pre-cool straps to automatically make the heater setpoint equal to the interface sensor on the strap near the radiator, 

plus an offset to account for the temperature change from the heater to the strap junction. Throughout the test, the 

offsets were adjusted as necessary to achieve the test heat flow goals. 

Figure 10 shows the cooldown from 7/13 to 8/23/2017, showing temperatures on the left axis, and pre-cool strap 

gradients on the right. During the ambient checkout activities that occurred until 7/21, the chamber cooled due to the 

LN2 flow to the scavenger panel assemblies. As the shroud started the formal GHe cooldown, the pre-cool straps had 

temperature gradients that had the junction temperature greater than the interface temperature. This was attributed to 

the radiator starting to cool radiatively to the DSERS panels before the GHe flow was opened to the pre-cool straps. 

Once the GHe flow for Zone 8 was started, the junction temperature on the pre-cool straps cooled below the 

temperature of the radiator interfaces, pulling heat out of the science instruments. The GHe flow was opened on 7/24 

by moving the flow valve to 50% open. Throughout cooldown, the ISIM bench heaters were used to control the 

instrument cooldown, including a temperature hold which ended on 8/2, to operate within structural and contamination 

control constraints. 

 

 
Figure 9. Pre-cool assembly attachment to DSERS panel. 
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On 8/11 the NIRSpec FPA pre-cool strap 0-Q heater was enabled to stem the heat flow from the instrument down 

the strap, to reduce risk of overcooling the instrument. The next instruments to start the 0-Q heaters were the MIRI 

and NIRCam on 8/15, then the NIRSpec OA instrument on 8/17. After turning on the NIRSpec OA 0-Q function when 

the instrument reached 40.0K, it was decided to let the instrument cool another degree before performing 0-Q, where 

the strap gradient was minimized. The FGS strap was the last one to 0-Q, which started on 8/19 after the instrument 

cooled below 38.0K. 

B. Cryo-stability and Thermal Balance 

For the cryo-stable and thermal 

balance portion of testing, GHe 

flow to zone 8 was gradually 

closed, while adjustments to the 

heater setpoint feedbacks were 

made. These adjustments during 

the period were typically setpoint 

offset changes of 0.05K to 0.025K. 

The measured heat flows for the 

duration of cryo-stability and 

thermal balance are shown in 

Figure 11. For much of the test 

phase, the heat flow was small, but 

from 9/7 to 9/12 the payload 

thermal team requested the pre-

cool strap heaters be used to push 

the radiator interfaces up to 40K so 

that the ISIM instruments could 

measure the End-to-End (E2E) 

thermal conductance for each of 

 
Figure 10. Cooldown profile for ISIM benches (dashed) and pre-cool strap gradient. 

 
Figure 11. Measured heat flow through pre-cool straps for cryo-stable 

and thermal balance period. 
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the flight heat straps. During this E2E testing, the NIRSpec FPA and FGS had a spike in heat flow as the instrument 

heaters were adjusted for the test. On 9/14, the NIRSpec OA heat strap began to remove heat while the other pre-cool 

straps were in the 0-Q mode. This was due to the NIRSpec Microshutter Array (MSA) annealing, a planned OTIS test 

step. This increased the temperature at the pre-cool interface black by about 1.1K. No effort was made to stay in the 

0-Q mode during this annealing process, and when it was complete, the temperature at the interface cooled back down 

and returned to the 0-Q process. The use of the pre-cool straps for E2E flight testing was not anticipated, but became 

a critical capability in verifying the flight heat strap conductances between the instruments and radiators. 

A closer look at the periods 

where the goal was to 0-Q the 

straps is shown in Figure 12, by 

modifying the scale from Figure 

11. All 5 of the straps have heat 

flows near 0W, with some spikes in 

heat flows, with it most 

prominently shown on the 

NIRSpec FPA strap. During 

testing, it was found that this 

periodic signature was due to the 

instrument system heater power 

and dissipation. Attempts to 

correct for the spike in heat flow, 

would be detrimental to the other 

direction as it oscillated between 

its maximum and minimum 

dissipation through the strap to the 

radiator.  

For the times between 8/23 and 

9/6 and from 9/17 to 9/24, the 

measured heat leakage 

performance for each strap is listed 

in Table 1, with values in mW. The 

heat leakage was determined by: 

 

 

 
junctionFradiatorIstrapleak TT

L

A
kQ  /

 (3) 

In this calculation, a positive heat flow implies the heat was flowing from OTIS through the pre-cool straps, while 

a negative heat flow implies heat was flowing from the pre-cool 0-Q heater up through the straps and into OTIS. This 

table gives the average heat leakage measured, the maximum, minimum, and the standard deviation (over 20 days of 

cryo-stability and thermal balance). The final column is the potential heat leakage due to the uncertainty in the 

temperature measurement. In the Thermal Pathfinder test, each of the Cernox sensor pairs were calibrated at stable 

periods to determine the precision (bias) and random errors. 

 
Table 1: Pre-cool strap heat leakages from cryo-stable and thermal balance including uncertainty. 

  

Average 

Heat Leak 

(mW) 

Maximum 

Heat Leak 

(mW) 

Minimum 

Heat Leak 

(mW) 

Standard 

Deviation 

(mW) 

Heat from temp. 

uncertainty 

(mW) 

NIRCam -0.39 1.95 -2.85 0.82 1.84 

NIRSpec FPA -0.08 5.70 -4.24 1.31 2.13 

NIRSpec OA 0.29 2.75 -1.58 0.71 2.89 

FGS 0.18 2.03 -0.84 0.45 1.68 

MIRI 0.47 1.29 -0.22 0.33 3.02 

 
Figure 12. Pre-cool strap measured heat flow for cryo-stable and 

thermal balance periods (zoomed in from Figure 11). 
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The pre-cool strap data shows that on average, the heat leak was below 0.5 mW, which satisfies the requirement. 

However, the NIRSpec FPA strap had the largest range as it oscillated. It stayed below 5 mW of heat leakage, with a 

standard deviation in values of 1.3, which helps to show how variable it was. Contrasting it to the MIRI strap, which 

did not show the oscillations like the NIRSpec FPA, it had always been below 1.5mW of heat leakage, and had a small 

standard deviation of 0.33. This demonstrates that the pre-cool straps were more capable of performing the 0-Q 

functions when the heat flowing down the ISIM heat straps to the radiators was constant. 

IV. Lessons Learned 

Prior to the OTIS cryogenic-vacuum test, the commissioning tests that used the “Pathfinder” test unit (an 

engineering model) was essential to first operate the GSE and STE in a test environment, prior to the introduction of 

flight hardware. These tests allowed for the characterization of the thermal hardware, demonstrating the capabilities 

and responsiveness to all phases of test. In all, these lessons can be compiled into 3 categories: 

1. Engineering models or interface simulators are very beneficial to ensure the hardware can be integrated 

and tested in a similar environment for the critical thermal vacuum test. The ISIM thermal simulators 

were GSE hardware in the Thermal Pathfinder test that were used to mount the pre-cool straps to in lieu 

of OTIS, and simulated OTIS heat loads for the pre-cool straps to remove and 0-Q against. This 

commissioning test burned down risk and demonstrated the strap capabilities. 

2. Communication between test teams, organizations, and disciplines is crucial for a successful test. 

Assumptions should not be made that a change to one system will not affect or be noticed on another. 

Simple forewarnings can go a long way to prevent missed events or potential limit violations and instead 

the anticipation of the change can prevent overcorrecting an impulse to the system. 

3. Any durations for sensor calibrations or heater control (Proportional, Integral, Derivative) parameters 

should be scheduled into the test timeline and planned for. These measurements or adjustments can 

become critical for measuring heat flows, or operating the hardware in test with the flight hardware. 

Allocating the time and performing these activities within the environment they will be tested at is 

essential. 

 

V. Conclusion 

Specialized thermal GSE was critical in the successful execution of the JWST OTIS test campaign. The pre-cool 

straps enabled an accelerated cooldown of the ISIM hardware to meet the test timeline, while being able to stem the 

heat flow during the critical thermal balance period to a few milliwatts of heat leakage. The hardpoint strut 0-Q heaters 

used at the main structural offloading support points to OTIS successfully managed heat flow out of the backplane 

support fixture. By zeroing the gradient across the flexure to the flight hardware, the heat leakage was minimized to 

values less than 6 mW for the bipods and 2 mW for the monopods. The 0-Q systems described here successfully met 

their requirements and provide guidance to future cryogenic missions seeking to manage the energy balances and 

accelerate schedules during ground testing. 
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