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Abstract 

The inverse Finite Element Method (iFEM) is a revolutionary methodology 

for real-time reconstruction of full-field structural displacements and stresses in 

structures that are instrumented with strain sensors. This inverse problem is 

commonly referred to as shape and stress sensing, which is well-recognized as 

an enabling technology for structural health monitoring systems. In this study, an 

improved iFEM formulation is proposed for shape and stress sensing of 

laminated composite and sandwich plates and shells. The formulation includes 

the kinematics of a shear deformation plate theory known as Refined Zigzag 

Theory (RZT) as its baseline. The present iFEM formulation is based upon the 

minimization of a weighted-least-squares functional that uses the complete set of 

section strains of RZT. The improved iFEM methodology is applicable for shape 

and stress sensing of thin and moderately thick plate and shell structures 

involving a relatively small number of strain gauges. The main advantage of the 

current formulation is that highly accurate through-the-thickness distributions of 

displacements, strains, and stresses are attainable using an element based on 

simple C0-continuous displacement interpolation functions. A three-node inverse-

shell element, named i3-RZT, is developed. Two example problems are examined 

in detail: (1) a simply supported rectangular laminated composite plate and (2) 

a wedge structure with a hole near one of the clamped ends. For both problems, 

the experimental strain data are generated numerically by the direct finite 

element analysis using high-fidelity discretizations. These strains are then 

regarded as the experimental strains obtained from surface mounted strain 

gauges or embedded fiber Bragg grating (FBG) sensors. The numerical results 

demonstrate the superior capability and potential applicability of the i3-

RZT/iFEM methodology for performing accurate shape and stress sensing of 

complex composite structures. 

Nomenclature 

1 2, ,x x z  Cartesian coordinate system of the plate 

( ) ( )

1 2,k ku u  In-plane displacement of the plate 

zu  Transverse displacement of the plate 

u , v  Uniform through-the-thickness displacements in the 1x  and 2x  

directions 

w  Transverse deflection 

( ) ( )

1 2, k k  Zigzag functions of RZT plate theory 

1 2,   Amplitude functions of the zigzag displacements 

u  Kinematic variables of RZT plate theory 

2h  Plate thickness 

( )2 kh  Thickness of the k-th lamina 
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( )ku , ( )kv  Interfacial values of the zigzag functions 

( ) ( )

1 2, k k  Slopes of the zigzag functions 

1G , 2G  Weighted-average transverse-shear moduli 

( )

11

kQ , 
( )

22

kQ  Lamina-level transverse-shear coefficients 

( ) ( ) ( )

11 22 12, ,  k k k  In-plane strain components 

( 1 3)   e , ( )e u  Membrane section strains 

( 4 6)    , ( )κ u  Bending section strains 

( ) ( 7 9)   k , ( ) ( )k
μ u  Zigzag section strains  

( 7 10)     Zigzag curvatures 

( ) ( )

1 2, k k

z z
 Transverse-shear strain components 

( 10,11)   , ( )γ u  First transverse-shear section strains 

( 12,13)   , ( )η u  Second transverse-shear section strains 

1 2 3, , ,     

i i i iε  Experimentally measured strains at the top surface of the laminate 

1 2 3, , ,     

i i i iε  Experimentally measured strains at the bottom surface of the laminate 

1 2 3, , ,  j j j j

i i i iε  Experimentally measured strains at the interior interface of the 

laminate 

1 2 3, , ,  i i i iE  Experimentally measured membrane strains 

4 5 6, , ,  i i i iK  Experimentally measured bending curvatures 

7 8 9, , ,  j j j j

i i i iM  Experimentally measured zigzag section strains 

10 11 12 13, , , ,   i i i i iG  Experimentally measured transverse-shear section strains 

( 7 10)     Experimental zigzag curvatures 

( ) u  Weighted least-squares functional of total iFEM discretization 

 ( 1 13)   w  Positive valued weighting coefficients  

( 1 13)     Least-squares functional of experimental section strains 

, ,x y z  Local coordinate system of i3-RZT element 

, ,X Y Z  Global coordinate system of i3-RZT element 

,s t  Dimensionless parametric coordinates 

, ( 1 3) i ix y i  Local nodal coordinates of i3-RZT element 

eA  Area of i3-RZT element 
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iu , iv , iw  i3-RZT displacements positive along , ,x y z  directions 

xi ,  yi ,  zi  Bending and drilling rotations positive counter clockwise 

 xi ,  yi ,  zi  Zigzag and drilling rotations positive counter clockwise 

iN , iL , iM  Linear and quadratic interpolation functions 

e
u  Element nodal displacement vector 

 ( 1 13)   B  Derivatives of the shape functions 

e
Γ  Element left-hand-side square matrix 

e
ε  The element right-hand-side vector 

 ( 1 13)   e
f  Contribution of each experimental section strain component 

 ( 1 13)   e
k  Contribution of each analytic section strain component 

Γ  A diagonal matrix for artificial zigzag rotations 

  Small positive constant 

, ( 1,2,3)  i i

x yk k i  Diagonal terms of Γ  matrix 

zψ  Drilling zigzag DOF vector 

e
T  Transformation matrix 

A  Global left-hand-side symmetric matrix 

U  Global nodal-displacement vector 

Q  Global right-hand-side vector 

nel  Total number of inverse finite elements 

RΑ  Reduced form of A  matrix 

RQ  Reduced form of Q matrix 

RU  Reduced form of U matrix 

U, V, W  Translations along the X, Y, Z  directions in Example 1 

X Yθ , θ  Bending rotations around the positive X, Y directions in Example 1 

X Yψ , ψ  Zigzag rotations around the positive X, Y  directions in Example 1 

q  Sinusoidal varying transverse pressure in Example 1 

0q  Magnitude of sinusoidal pressure in Example 1 

a , b  Length and width of the plate in Example 1 
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FEM

max X Y X Y vχ (χ W,θ ,θ ,ψ ,ψ , )  Maximum values of the deflections, bending and zigzag rotations, and 

von Mises stresses obtained from RZT (FEM) analysis in Example 1 

X Y X Y vχ (χ W,θ ,θ ,ψ ,ψ , )  Normalized deflections, bending and zigzag rotations, and von Mises 

stresses obtained from i3-RZT (iFEM) analysis in Example 1 

ne Number of element subdivisions along the plate edges in Example 1 

U , XX , XZ  Normalized values of in-plane displacements, and normal and 

transverse-shear stresses in Example 1 

1L , 2L  Length and width of the wedge structure in Example 2 

(X , Y , Z ) ( =A, B)     Group coordinate systems of the wedge structure’s panels A and B in 

Example 2 

(U , V , W ) ( A, B)      The translations along the positive coordinate (X , Y , Z )    directions 

in Example 2 

X Y(θ , θ ) ( A, B)     Bending rotations around the positive (X , Y )   in Example 2 

X Y(ψ , ψ ) ( A, B)     Zigzag rotations around the positive (X , Y )   in Example 2 

FEM FEM

A, max B, max

X Y X Y v

χ , χ

(χ U,V,W,θ ,θ ,ψ ,ψ , )
  

Maximum values of the translations, rotations, and von Mises stress 

obtained from RZT (FEM) analysis for panels A and B in Example 2 

A B

X Y X Y v

χ , χ

(χ U,V,W,θ ,θ ,ψ ,ψ , )
 Normalized translations, rotations, and von Mises stress obtained from 

i3-RZT (iFEM) analysis for panels A and B in Example 2 

1. Introduction 

 Structural health monitoring (SHM) is a multidisciplinary technology that provides conclusive real-time 

information regarding global and/or local structural state of a structure utilizing onboard sensing systems. 

The main objective of SHM is to monitor structural behavior and potentially identify damage and failure 

conditions. Application of SHM serves to increase human and environmental safety as well as reduce 

maintenance cost. Thus, SHM systems are essential technologies for many types of aeronautical, naval, and 

civil structures [1]. 

 Over the last several decades, composite and sandwich material systems have been used extensively as 

primary structures in many different engineering applications, such as ship and offshore structures, civil 

and military aircraft, and wind turbines [2-4]. Such composite materials are appealing because they have 

superior tensile strength and resistance to compression (as a result of its fibrous nature), lighter weight, 

higher operating temperatures, and greater stiffness. Although composite structures offer numerous 

advantages, their load carrying capabilities can diminish due to various types of failures, such as 

delamination [5], fiber/matrix cracking [6], and face/core debonding [7], leading to severe reduction in their 

strength and structural integrity. Inspection of composite parts is generally cumbersome and expensive [8]. 

Thus, monitoring structural integrity by the way of SHM may result in improvement in safety and reduction 

in cost. 
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 Real-time reconstruction of full-field structural displacements and stresses, which is commonly referred 

to as “shape and stress sensing”, is the key component of the SHM process. A well-suited algorithm for 

performing shape and stress sensing of a structure should have the following characteristics: (1) general 

enough to take into account complex structural topologies and boundary conditions, (2) robust, stable, and 

accurate under a wide range of loading conditions, material systems, and inherent errors in the strain 

measurements, and (3) sufficiently fast for real-time applications [9]. Tikhonov and Arsenin [10] introduced 

a regularization term that guarantees a confident smoothness degree to solve this inverse problem (shape 

sensing), and most of the inverse methods use some type of Tikhonov’s regularization [11-13]. Many shape 

sensing studies have been performed to solve the problem of beam bending [14-19]. In addition to the 

studies concerning the shape sensing of beam-type structures, the real-time monitoring of plate structures 

has been considered by several authors [20-24]. Most of the inverse methods mentioned above do not take 

into account the complexity of boundary conditions and structural topology. They also require accurate 

loading information that is difficult to obtain under real-time conditions outside the laboratory environment. 

Hence, they are not generally suited for use in on-board SHM algorithms. 

 The inverse Finite Element Method (iFEM) is a state-of-the-art methodology originally introduced by 

Tessler and Spangler [25, 26] for real-time reconstruction of full-field structural displacements in plate and 

shell structures that are instrumented with strain sensors. In contrast to other developed SHM methods, the 

iFEM methodology is a revolutionary shape and stress sensing algorithm and possesses the aforementioned 

characteristics required for a powerful SHM algorithm. The main advantage of the iFEM algorithm is that 

static and dynamic behavior of any structure can be obtained without prior knowledge of loading. The iFEM 

algorithm reconstructs the structural deformations from experimentally measured strains based on the 

minimization of a weighted-least-squares functional. The formulation involves the entire structural 

geometry that is discretized by using inverse finite elements in which the measured strain data are adapted 

to the element strains in a least-square sense. This results in a system of linear algebraic equations that can 

be solved for the unknown displacements describing the deformed structural shape in real time. Recently, 

a U.S. patent [27] was obtained for a system that performs iFEM-based shape sensing analysis of a 

downhole structure for oil and gas drilling-related services. 

 Since the first publication of the iFEM algorithm, many different numerical and experimental studies 

have been devoted to expanding the horizon of the iFEM methodology in the literature. For instance, Tessler 

and Spangler [28] developed a three-node inverse shell element (iMIN3) utilizing lowest-order 

anisoparametric C0 continuous shape functions and adopting the kinematic assumptions of Mindlin plate 

theory. The precision of the iMIN3 element is numerically verified in [28]. Later, Quach et al. [29] and 

Vazquez et al. [30] confirmed the robustness of the iMIN3 element by conducting laboratory tests that use 

experimentally measured real-time strain data. Moreover, Tessler et al. [31] enhanced the iMIN3 element 

for displacement and stress monitoring of plate and shell structures undergoing large displacements. Apart 

from iMIN3, Kefal et al. [32] recently formulated a four-node quadrilateral inverse-shell element, iQS4, 

utilizing the kinematic assumptions of the first-order and transverse-shear deformation theory. This new 

element includes hierarchical drilling rotation degrees-of-freedom (DOF) and further extends the practical 

usefulness of iFEM for shape-sensing analysis of large-scale structures. Kefal et al. [32] numerically 

verified the precision of the iQS4 element by solving several validation and demonstration problems. 

Furthermore, Cerracchio et al. [33] and Gherlone et al. [9, 34, and 35] formulated a robust inverse frame 

element that accounts for stretching, torsion, and 3-D bending according to Timoshenko beam theory which 

accounts for transverse-shear deformations. They numerically and experimentally validated the capability 
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of their inverse frame element by conducting several shape-sensing analyses of three-dimensional frame 

structures undergoing static and/or damped harmonic excitations.  

 The application of the iFEM methodology for SHM of future aerospace vehicles is discussed in [36, 

37]. Likewise, another application of iFEM algorithm to real-time displacement monitoring of a complex 

geometries is presented in [38]. Apart from aerospace applications, Kefal and Oterkus [39] performed shape 

sensing of a longitudinally and transversely stiffened plate as a fundamental application of the iFEM 

framework for SHM of marine structures. Similarly, Kefal and Oterkus [40] presented a more sophisticated 

application of iFEM for marine structures, namely displacement and stress monitoring of a chemical tanker 

based on iFEM algorithm. More recently, Kefal and Oterkus [41] demonstrated the application of the iFEM 

methodology for monitoring multi-axial deformations and stresses of a Panamax containership advancing 

through sea waves. Lastly, Kefal and Oterkus [42] investigated the application of iQS4/iFEM framework 

to offshore structures. All investigations have so far proved that the iFEM framework is an accurate, robust, 

and fast shape and stress sensing algorithm. 

 All the iFEM-based shape sensing case studies described in the previous two paragraphs adopted First-

order Shear Deformation Theory (FSDT). Although generally regarded as an accurate theory, FSDT may 

lead to somewhat inadequate predictions when applied to relatively thick composite and sandwich 

structures. For such structures, an accurate and robust formulation is required that can take into account the 

discrete nature of fiber- and resin-rich layers of individual plies as well as the variation of stiffness and 

strength properties of the core. Tessler et al. [43] developed such a formulation and called it the Refined 

Zigzag Theory (RZT). Recently, Cerracchio et al. [44, 45] improved the original iFEM formulation [25, 

26] by adding the kinematic assumptions of the RZT. This recent formulation is intended for applications 

dealing with multilayered composite and sandwich structures possessing a high degree of anisotropy and 

heterogeneity. Even though their RZT-based iFEM formulation performs well for a wide range of 

composite laminates, the formulation is lacking the complete definition of transverse-shear section strains 

of RZT. Specifically, the variational statement invoked in Cerracchio et al. [44, 45] is simplified with 

respect to transverse-shear deformations: the formulation uses only the second transverse-shear section 

strain of RZT and omits the first transverse-shear section strain. 

 In the current study, the RZT-based iFEM formulation [44, 45] is enhanced to enable highly accurate 

shape and stress sensing of multilayered composite and sandwich plates/shells. The least-squares functional 

of the improved iFEM formulation is defined using the complete set of section strains consistent with RZT 

plate theory. These section strains are due to the membrane, bending, zigzag, and full (first and second) 

transverse-shear section strains. The present iFEM methodology is expected to be applicable for thin and 

moderately thick plate and shell structures for a wide range of laminated composites including sandwich 

designs. In addition, a powerful weighting strategy, originally introduced by Tessler et al. [37], is used to 

allow for a relatively small number of strain sensors to be utilized, thus making this new formulation to be 

more practical. The improved iFEM formulation requires simple C0-continuous displacement interpolation 

functions.  Thus, a robust and computationally efficient three-node inverse-shell element is developed 

(labeled as i3-RZT), which is capable of performing accurate shape- and stress-sensing analyses of complex 

engineering structures.  

 In the remainder of the paper, the theoretical foundation of the current formulation and its quantitative 

assessment are detailed. In section 2, the kinematics of the RZT plate theory are briefly reviewed and the 



 

 7 

strain field is properly defined in terms of all section strains to be used in the iFEM weighted-least-squares 

functional. In section 3, with the help of a computational procedure, experimentally measured surface 

strains are used to calculate approximate transverse-shear section strains that are consistent with the 

experimental measurements. In section 4, a variational statement of the present iFEM methodology is 

introduced for both discrete and continuous forms of experimental section strains. The numerical 

implementation of the i3-RZT element is described based on the improved iFEM formulation in section 5. 

In section 6, three different simply supported rectangular laminates, each of which has a different laminate 

stacking sequence (uniaxial, cross-ply and angle-ply), are analyzed as a benchmark problem. Then, the 

applicability of the improved iFEM formulation to more complex composite/sandwich structures is 

demonstrated by analyzing a wedge structure with a hole near one of the clamped ends. In section 7, several 

conclusions emphasizing the benefits of the improved iFEM methodology are highlighted. 

2. Kinematics of the Refined Zigzag Theory 

 A plate with thickness of 2h  is oriented with respect to a Cartesian coordinate system 1 2( , , )x x z  where 

1 2( , )x x  identify the mid-plane as shown in Figure 1. According to RZT plate theory [43], the orthogonal 

components of the displacement vector, corresponding to material points of the plate (or laminate), can be 

expressed as 

 ( ) ( )

1 1 2 1 2 1 1 2 1 1 1 2( , , ) ( , ) ( , ) ( ) ( , )    k ku x x z u x x z x x z x x  (1a) 

 ( ) ( )

2 1 2 1 2 2 1 2 2 2 1 2( , , ) ( , ) ( , ) ( ) ( , )    k ku x x z v x x z x x z x x  (1b) 

 1 2 1 2( , , ) ( , )zu x x z w x x  (1c) 

where the in-plane displacement components ( ) ( 1,2)  ku  contain constant, linear, and zigzag variations 

through the thickness. The zigzag variations are C0-continuous functions with discontinuous thickness-

direction derivatives along the lamina interfaces. The superscript (k) is used to indicate the k-th lamina, 

whereas the subscript (k) defines the interface between the k-th and (k+1)-th laminae. Thus, the k-th lamina 

thickness is defined in the range ( 1) ( )[ , ] ( 1,..., ) k kz z z k N  (refer to Figure 2). The transverse displacement 

zu  is assumed to be constant through the thickness and is independent of constitutive properties of the k-th 

lamina; hence, the superscript (k) does not appear in its definition. 

 In Eq. (1), the functions 1 2( , )u u x x  and 1 2( , )v v x x  represent the mid-plane displacements 

(translations) along 1x  and 2x  directions, respectively. Moreover, the functions 1 2( , )  ( 1,2)    x x  

represent average bending rotations of the transverse normal around the positive 2x  and negative 1x  

directions, respectively. Furthermore, the function 1 2( , )w w x x  is the transverse deflection and the 

functions ( ) ( ) ( )  ( 1,2)    k k z  denote through-the-thickness piecewise-linear zigzag functions 

associated with heterogeneous plates. Finally, the functions 1 2( , )  ( 1,2)    x x  represent the spatial 

amplitudes of the zigzag displacements, and they are the unknowns in the analysis together with the other 

five kinematic variables. These functions, i.e., kinematic variables of the RZT plate theory, can be written 
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in a compact vector form as 

  1 2 1 2   
T

u v wu  (2) 

 Following the approach in [43], the zigzag functions ( ) ( 1,2)  k  can be defined as 

 ( ) ( ) ( )

1 ( 1) ( )

1 1
(1 ) (1 )

2 2
     k k k

k ku u  (3a) 

 ( ) ( ) ( )

2 ( 1) ( )

1 1
(1 ) (1 )

2 2
     k k k

k kv v  (3b) 

where 

 
( 1)( )

( )
1 [ 1,1] ( 1, , )

 
      
 

kk

k

z z
k N

h
 (3c) 

with the first lamina beginning at (0)  z h , the last (N-th) lamina ending at ( )  Nz h , and the k-th lamina 

ending at ( )

( ) ( 1) 2  k

k kz z h , where ( )2 kh  denotes the thickness of the k-th lamina. 

 Evaluating Eqs. (3a-b) at the lamina interfaces gives rise to the definitions of the interfacial 

displacements 

 

( ) ( ) ( ) ( )

( 1) 1 ( ) 1

( ) ( ) ( ) ( )

( 1) 2 ( ) 2

( 1), ( 1)

( 1), ( 1) ( 1, , )

   

   





    

     

k k k k

k k

k k k k

k k

u u

v v k N
 (4a) 

where the interfacial displacements at the bottom and top plate surfaces vanish identically; that is, 

 (0) ( ) (0) ( ) 0   N Nu u v v  (4b) 

 According to Tessler et al. [43], the ( )ku  and ( )kv  interfacial values of the zigzag functions are expressed 

in terms of piecewise constant slope functions ( ) ( 1,2; 1, , )   k k N  as 

 

( )
( ) ( 1)( ) 1

( )
( ) ( 1)2

2 ( 1, , )








     
       

     

k
k kk

k
k k

u u
h k N

v v
 (5a) 

where the ( ) ( 1,2)  k  slope of the zigzag functions, namely derivatives of zigzag functions with respect 

to the z  direction can be explicitly defined for the k-th layer as 

 

( ) ( )

1 1 11

( ) ( )

2 2 22

1

1





   
   

   

k k

k k

G Q

G Q
 (5b) 
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with 

 

1
( )

( )
1 111

1
( )

2

( )
1 22

1

1









  
  
    

   
    

  
  





iN

i
i

iN

i
i

h

h QG

G h

h Q

 (5c) 

where 1G  and 2G  are the weighted-average transverse shear stiffness coefficients of their respective 

lamina-level coefficients 
( )

11

kQ  and 
( )

22

kQ . 

 Using linear strain-displacement relationships of elasticity theory, the in-plane strain components can 

be defined as 

 ( ) ( ) ( )

11 1,1 1 4 7     k k ku e z  (6a) 

 ( ) ( ) ( )

22 2,2 2 5 8     k k ku e z  (6b) 

 ( ) ( ) ( ) ( )

12 1,2 2,1 3 6 9      k k k ku u e z  (6c) 

where ( 1 3)   e , ( 4 6)    , and ( ) ( 7 9)   k  denote the membrane, bending, and zigzag 

section strains (also known as strain measures.) Their explicit forms are given in terms of the kinematic 

variables of RZT, as 

 

1 ,1

2 ,2

3 ,2 ,1

( )

  
   

    
      

e u

e v

e u v

e u  (7a) 

 

4 1,1

5 2,2

6 1,2 2,1

( )

 

 

  

  
   

    
      

κ u  (7b) 

 

( ) ( )

7 1 7

( ) ( ) ( )

8 2 8

( ) ( ) ( )

9 1 9 2 10

( )

  

  

    

   
   

    
      

k k

k k k

k k k

μ u  (7c) 

with 

  7 8 9 10 1,1 2,2 1,2 2,1            (7d) 

where ( 7 10)     represents the zigzag curvatures. Note that the zigzag section strains ( ) ( )k
μ u , the 
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zigzag functions ( ) ( 1,2)  k , and the zigzag curvatures ( 7 10)     are coupled in Eq. (7c). 

 The transverse-shear strain components can be defined as 

 ( ) ( ) ( ) ( )

1 1, ,1 1 10 1 12(1 )        k k k k

z z zu u  (8a) 

 ( ) ( ) ( ) ( )

2 2, ,2 2 11 2 13(1 )        k k k k

z z zu u  (8b) 

where ( 10,11)    and ( 12,13)    denote, respectively, the first and second transverse-shear section 

strains of RZT. Their explicit forms in terms of the kinematic variables u  are given as 

 
,1 110

,2 211

( )




  
    

   

w

w
γ u  (9a) 

 
12 10 1

13 11 2

( )
  

  

   
    

  
η u  (9b) 

 Integrating Eq. (8) across the laminate thickness while normalizing by the laminate thickness gives the 

average transverse-shear section strains 

 

( )
10 1

( )
11 2

1

2

 

 

  
   

   

h k

z

k

zh

dz
h

 (10) 

Note that  ( 10,11)    have the same definition as the transverse-shear strains of FSDT; moreover, the 

zigzag rotations ( 1,2)    provide no contribution to these average transverse-shear strains. 

3. Computation of experimental section strains 

 Conventional strain rosettes or embedded fiber-optic strain sensor networks (e.g., Fiber Bragg Grating 

(FBG) sensors) can be used to provide a large amount of on-board strain data that is required by the iFEM 

computational framework. Since RZT requires three strain sensors in the thickness direction for a given in-

plane position (refer to Figure 3), the most natural sensor positions are top and bottom surface-mounted 

sensors and, in addition, an embedded sensor between any two adjacent material layers. The subject of how 

to embed FBG strain sensors in laminated composites, addressing issues of durability and survivability, has 

been recently discussed in [55].  The optical fiber can be directly positioned between the plies at the desired 

locations during the hand lay-up manufacturing process. In addition, the automated manufacturing process 

with fiber placement robot technology can be used to embed the optical fibers. Alternatively, embedding-

after-manufacturing can also be implemented by creating hollow tubes during the curing process of the 

laminate. Subsequently, the optical fiber can be positioned through the hollow tube and fixed in position 

by injection of epoxy resin.  

 The first step in this formulation requires the knowledge of all section strains of RZT, those computed 

from the theory itself (analytic section strains, Eqs. (7) and (9)), and those computed from the actual strain 
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measurements (experimental strains). The following notation is used to denote experimentally measured 

strains that are measured at the top ‘+’, bottom ‘–’, and interior interface ‘j’ locations  

 
1 2 3( , ) [ ]       i i i i i iz hε x  (11a) 

 
1 2 3( , ) [ ]       i i i i i iz hε x  (11b) 

 
( ) 1 2 3( , ) [ ]   j j j j

i i i j i i iz zε x  (11c) 

where in ( , , ) ( 1,2,3)       j

i i i
 the first subscripts 1 and 2 denote the transformed normal strain 

measurement along the directions 1x  and 2x , whereas the first subscript 3 denotes the transformed shear 

strains in the 1 2x x  plane. 

 By virtue of the zigzag functions of RZT, the zigzag contributions to the in-plane strains vanish at the 

top and bottom surfaces. Therefore, the experimentally measured membrane strains iE  and bending 

curvatures iK can be determined at a particular discrete location ix  as 

 

1 1 1

2 2 2

3 3 3

1

2

 

 

 

 

 

 

   
  

      
       

i

i i

Ε  (12a) 

 

4 1 1

5 2 2

6 3 3

1

2

 

 

 

 

 

 

   
  

      
       

i

i i

h
Κ  (12b) 

The iE  and iK  section strains correspond to their analytic counterparts ( )e u  and ( )κ u  given by Eqs. (7a-

b).  

 Substituting j-th interface measured strains ( 1,2,3)  j

i
 and section strains iE  and iK  into Eq. (6), 

the j

iM  zigzag section strains can be computed at a particular discrete location ( )( , )i i jz zx  as [44, 45] 

 

7 1 1 ( ) 4

8 2 2 ( ) 5

9 3 3 ( ) 6







      
   

        
         

j j

j

j j j

i j

j j

ji i

z

z

z

Μ  (13) 

Note that the internal strain sensors can be positioned along any layer interface ( )jz  and that j

iM  are 

evaluated at that interface. Hence, when j

iM  is compared to its analytic counterpart ( ) ( )k
μ u  within the 

iFEM/RZT variational equation (refer to Section 4), both terms are evaluated at the same location 

( )( , )i i jz zx . The uppercase Greek letters in Eqs. (12-13) are used herein to denote the section strains due 
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to experimental measurements.  

  

The transverse-shear section strains can be cast in vector form as 

  10 11 12 13    i iG  (14) 

where ( 10,11)  i  and ( 12,13)  i  denote discrete first and second transverse-shear section strains 

that correspond to their analytic counterparts ( )γ u  and ( )η u  given respectively by Eq. (9a-b).  

The experimentally measured strains ( , , ) ( 1,2,3)       j

i i i
 cannot be directly used to calculate the 

transverse-shear section strains iG . It is noted that in thin shells, the contributions of iG  are very small in 

comparison to those due to bending and zigzag curvatures. In this case, the iG  contributions can be safely 

omitted from the iFEM formulation. On the other hand, in thick shells, a significant amount of deformation 

is caused by transverse-shear stresses; consequently, shear deformation, hence iG   must be included in the 

iFEM analysis.  

 The discrete iE , iK , and j

iM  quantities can also be smoothed a priori utilizing, for example, the 

Smoothing Element Analysis (SEA) developed by Tessler et al. [46, 47]. Upon SEA smoothing, these 

quantities are represented by nearly C1-continuous, piecewise polynomials with C0-continuous first-order 

derivatives. The smoothed counterparts of these experimental section strains will henceforth be denoted as 

E , K , and j
M , where the ‘i’ subscript is removed to differentiate them from the discrete quantities. An 

additional advantage of this smoothing step is that sufficiently accurate first-order derivatives of E , K , 

and j
M  can be obtained and subsequently used to obtain sufficiently accurate estimates of the 

corresponding transverse-shear section strains G . The requisite steps in the computational procedure to 

calculate G are described in Figure 4. In this procedure, four equilibrium equations of RZT are solved for 

the transverse-shear stress resultants [43], while requiring ( 7 10)     (experimental zigzag 

curvatures) to be continuous. These curvatures correspond to their analytic counterparts ( 7 10)     

given by Eq. (7d). The continuous form of ( 7,8)    can be readily obtained from ( 7,8)  j  as 

 

7

( )

1 ( )7

8 8

( )

2 ( )

( )

( )





 
 

   
   

    
 
 

j

k

j

j

k

j

z

z

 (15) 

where ( )

( )( ) ( 1,2)  k

jz  represents the zigzag function evaluated at the j-th interface ( )( )i jz z . It should 

be noted, however, that the strain data measured by the strain rosettes which correspond to the ix position 

do not provide sufficient information to determine either the discrete form ( 9,10)  i  or the continuous 

form ( 9,10)    of the remaining zigzag curvatures. To overcome this difficulty, an accurate estimate 
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of ( 9,10)  i  can be computed by performing a preliminary iFEM analysis using the continuous 

experimental section strains ( E , K , j
M ) while ignoring the G contributions. This preliminary iFEM 

analysis can produce sufficiently accurate discrete ( 9,10)  i , that are subsequently smoothed by SEA 

to recover nearly C1-continuous ( 9,10)   . Thus, G is obtained from the four equilibrium equations 

of RZT that are based on first-order derivatives of E , K , and ( 7 10)    . As described in Figure 4, 

this computational strategy results in the continuous form of all experimental section strains 

   
j

ε Ε Κ Μ G . 

4. Inverse Finite Element Method based on RZT 

 Following the iFEM methodology of Tessler et al. [37] as a general framework, and accounting for the 

membrane, bending, zigzag, and transverse-shear deformations of RZT, a weighted least-squares functional 

( ) u  can be defined as 

 
13

1

( )  





 wu  (16) 

where  ( 1 13)   w  are positive valued weighting coefficients associated with the individual section 

strains and the functional ( 1 13)     is the least-squares functional of experimental section strains ( ε  

or iε ) and kinematic variables u . If the discrete experimental section strains iε  are directly used in iFEM 

analysis, the least-squares functional becomes ( , )  ( 1 13)     iu ε  and can be defined as the 

normalized Euclidean norms 

  
2

1

1
( )  ( 1,2,3)   



   
n

i i

i

e
n

u  (17a) 

  
2

2

1

(2 )
( )  ( 4,5,6)    



  
n

i i

i

h

n
u  (17b) 

 
2

( )

1

1
( ) )  ( 7,8,9)    



    
n

k j

i i

in
u  (17c) 

  
2

1

1
( )  ( 10,11)    



   
n

i i

in
u  (17d) 

  
2

1

1
( )  ( 12,13)    



  
n

i i

in
u  (17e) 

where 1 k N  and or ( 1) j k k . If the raw strain data are smoothed a priori (i.e., using SEA analysis 

as described in section 3) such that the continuous experimental section strain ε  become available for iFEM 

analysis, the least-squares functional, denoted as ( , )  ( 1 13)     u ε , can be defined in terms of the 



 

 14 

dimensionless L2 squared norms given as 

  
21

( )  ( 1,2,3)     
A

e dA
A

u  (18a) 

  
2

2(2 )
( )  ( 4,5,6)      

A

h
dA

A
u  (18b) 

 
2

( )1
( ) )  ( 7,8,9)        

k j

A

dA
A

u  (18c) 

  
21

( )  ( 10,11)      
A

dA
A

u  (18d) 

  
21

( )  ( 12,13)      
A

dA
A

u  (18e) 

 The weighting constants  ( 1 13)   w  in Eq. (16) control the complete coherence between the 

analytic section strains and their experimentally measured values. Their proper usage is especially critical 

for the problems involving relatively few locations of strain gauges. When every analytic section strain has 

a corresponding experimentally measured value (ε  or iε ), the weighting constants are set as 

 = 1 ( 1 13)   w  for Eqs. (17-18). In the case of a missing experimental strain component, the 

corresponding weighting constant is set as a small number such as 510  , and Eqs. (17-18) take on the 

reduced form defined by the L2 squared norms 

  
21

( )    (w ),  ( 1,2,3)      
A

e dA
A

u  (19a) 

  
2

2(2 )
( )    (w ),  ( 4,5,6)       

A

h
dA

A
u  (19b) 

 
2

( )1
( )  (w ),  ( 7,8,9)         

k

A

dA
A

u  (19c) 

  
21

( )    (w ),  ( 10,11)       
A

dA
A

u  (19d) 

  
21

( )    (w ),  ( 12,13)       
A

dA
A

u  (19e) 

 Furthermore, the iFEM methodology also permits the use of “strain-less” inverse elements – the type of 

elements that do not have any experimental section strains. For these “strain-less” elements, all squared 
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norms in Eqs. (19) are multiplied by the small weighting constants 5 =  = 10  ( 1 13)    w . Therefore, 

an iFEM discretization can have very sparse measured strain data, and yet the necessary interpolation 

connectivity can still be maintained between the elements that have strain-sensor data. 

5. The inverse-shell element formulation (i3-RZT) 

 A three-node triangular inverse-shell element, labeled i3-RZT, is developed on the basis of an improved 

iFEM algorithm. The inverse-element formulation is derived using the Tessler-Dong interdependent 

interpolation concept [48, 49]. The key concept originates from the RZT beam-frame formulation, from 

which constraint equations are devised and imposed to each edge of an unconstrained triangular element. 

The unconstrained triangular element has six nodes, where each corner node has seven displacement DOF 

and each mid-side node has three displacement DOF. By applying relevant constant-shear edge constraints 

[51], the displacement DOF at the mid-nodes are condensed out analytically.  The resulting element has 

nine displacement DOF per node (only corner nodes) including the drilling rotations and artificial zigzag 

rotations, as shown in Figure 5. Due to the inclusion of drilling rotations, this new element has two 

beneficial aspects: (1) Singular solutions can be simply avoided when modelling complex shell structures; 

and (2) the i3-RZT element has less tendency toward shear locking for membrane problems. Furthermore, 

it is much easier to implement the i3-RZT element than the unconstrained element because each single node 

has the same number of displacement DOF.  

 The i3-RZT element is defined in a convenient local Cartesian frame of reference ( , , )x y z , with its 

origin (0,0,0)  located at the centroid of the mid-plane triangle. With the element nodes referred to the 

global coordinates ( , , )X Y Z , suitable transformation matrices defining the local-to-global transformations 

are readily established in accordance with standard finite element procedures to assemble element matrices 

into a global system of equations (e.g., refer to [50]). 

The ( , )x y  reference plane of the i3-RZT element can be uniquely defined in terms of bilinear isoparametric 

shape functions as 

 1 2 3( , ) (1 )    x s t s t x sx t x  (20a) 

 1 2 3( , ) (1 )    y s t s t y s y t y  (20b) 

where s  and t  are dimensionless isoparametric coordinates and ( , ) ( 1 3) i ix y i  are the local nodal 

coordinates of the element. This definition is necessary for numerical Gauss integration of any function 

defined on the element surface. 

 The membrane displacements u  and v  are defined in terms of their nodal DOF iu  and iv  and the nodal 

drilling rotations  zi  as 

 
3

1

( )


  i i i zi

i

u N u L  (21a) 
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3

1

( )


  i i i zi

i

v N v M  (21b) 

with iN  and { iL , iM } denoting, respectively, the linear and quadratic interpolation functions that are 

expressed in terms of the three area-parametric coordinates of the triangle. Note that the quadratic functions 

iL  and iM ensure the requisite interaction between the hierarchical drilling rotation DOF and the membrane 

displacements of the element.  

 The transverse deflection w , two bending rotations  ( 1,2)   , and two zigzag rotations  ( 1,2)    

are interpolated as follows 

 
3

1

[ ( ) ( )]   


     i i i xi xi i yi yi

i

w N w L M  (22a) 

 
3

1

1

 


 i yi

i

N  (22b) 

 
3

2

1

 


  i xi

i

N  (22c) 

 
3

1

1

 


 i yi

i

N  (22d) 

 
3

2

1

 


  i xi

i

N  (22e) 

This coupled, anisoparametric interpolation strategy was originally developed by Tessler and Hughes [51] 

for a three-node Mindlin plate element, MIN3, and subsequently used by many authors, e.g., Versino et al. 

[52], Cerracchio et al. [45]. The explicit forms of these shape functions are given in Appendix A. 

 Taking the relevant partial derivatives of Eqs. (21) and (22), and then substituting these derivatives into 

Eqs. (7) and (9), gives rise to explicit definitions of all section strains in terms of the element nodal 

displacement vector e
u  as 

 1 2 3( )    
T

e e e e
e u B u B u B u  (23a) 

 4 5 6( )    
T

e e e e
κ u B u B u B u  (23b) 

 ( ) ( ) ( ) ( )

1 7 2 8 9( )     
T

k e k e k e k e
μ u B u B u H B u  (23c) 

 10 11( )    
T

e e e
γ u B u B u  (23d) 
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 12 13( )    
T

e e e
η u B u B u  (23e) 

where 

 ( ) ( ) ( )

1 2[ ]  k k k
H  (23f) 

 1 2 3
   

T
e e e e

u u u u  (23g) 

   ( 1 3)         
T

e

i i i i xi yi zi xi yi ziu v w iu  (23h) 

and the matrices  ( 1 13)   B  contain derivatives of the shape functions (refer to Appendix B). 

 Pursuing the procedure in section 3, which enables an accurate computation of continuously distributed 

experimental section strains ε  and then by substituting Eqs. (23a-e) into Eqs. (16) and (18), results in the 

element weighted least-squares functional of the form 

 
13

1

( ) ( , ) 





 e e

e wu u ε  (24) 

By virtue of these assumptions, all strain compatibility relations are explicitly satisfied so that Eq. (24) can 

be minimized with respect to the nodal displacement DOF e
u  giving rise to 

 
( )

0


  


e
e e ee

e

u
Γ u ε

u
 (25a) 

or simply 

 e e e
Γ u ε  (25b) 

where e
Γ  is the element left-hand-side square matrix; 

e
ε  is the element right-hand-side vector, which is a 

function of the measured strain values; and 
e

u  is the nodal displacement vector of the element.  

 The e
ε  vector is a function of the number of strain sensors within the element as well as the measured 

section-strain values, and is given by 

 
13

1

 
 

e ewε f  (26a) 

where  ( 1 13)   e
f  vectors denote the contribution of each experimental section strain component and 

can be explicitly written in terms of experimental section strains as 
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 ( 12,13)     
e

e T

e A

dxdy
A

f B  (26h) 

 The e
Γ  matrix combines the contribution of every analytic section strain component and its 

corresponding weighting constant  ( 1 13)   w  and is given by 

 
13

1

 
 

e ewΓ k  (27a) 

where  ( 1 13)   e
k  matrices denote the contribution of each analytic section strain component and can 

be explicitly written in terms of the  ( 1 13)   B  matrices as 

 
1

 ( 1 3,10 13)      
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k B B  (27b) 

 
2(2 )

  ( 4 6)      
e

e T

e A

h
dxdy

A
k B B  (27c) 

 
 

2
( )

1

7 7 7   


 
e

k

e T

e A

dx dy
A

k B B  (27d) 



 

 19 

 
 

2
( )

2

8 8 8   


 
e

k

e T

e A

dx dy
A

k B B  (27e) 

  ( )

9 9 9

1
  

e

T
e T k

e A

dx dy
A
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 Once e
Γ  is constructed according to Eqs. (27a-f), three artificial stiffness terms associated with the 

drilling ( 1 3)  zi i  DOF must be added to the e
Γ  matrix to avoid singular solutions. These terms are cast 

in a diagonal matrix Γ  given as 

 

1

2

3

0 0

0 0

0 0



 



 
 

  
 
 

z

z

z

k

k

k

Γ  (28a) 

with 

 min( , ) ( 1,2,3)    i i i

z x yk k k i  (28b) 

where   is a small positive constant, e.g., 510  , and the coefficients , ( 1,2,3)  i i

x yk k i  are diagonal 

terms of the e
Γ  matrix corresponding to the zigzag ( , ) ( 1 3)   xi yi i  DOF. Then, the element equations 

defined in Eq. (25b) can be rewritten as 

 


     
     
   

v v

z

Γ 0 v f

0 Γ ψ 0
 (28c) 

where the zψ  vector contains the drilling zigzag DOF, the v  vector represents all other DOF of the i3-RZT 

element, the vΓ  matrix and vf  vector are the sub-elements associated with the v  vector. 

 Once the element matrix equations are established in their global (system) coordinate system, the 

element contributions to the global equations of the discretized structure can be constructed via the usual 

element-assembly operator 
1


nel

e
 giving rise to the global equations 

 AU Q  (29a) 

where 

 
1

( )

    

nel
e T e e

e
Α T Γ T  (29b) 
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U T u  (29c) 

 
1

( )

    

nel
e T e

e
Q T ε  (29d) 

where e
T  is the transformation matrix of the nodal DOF of an element from the local to the global 

coordinate system, A  is the global left-hand-side symmetric matrix which is independent of the measured 

strain values, U  is the global nodal-displacement vector, and Q  is the global right-hand-side vector, which 

is a function of the measured strain values. In Eqs. (29b-d), the parameter nel  stands for the total number 

of inverse finite elements. 

 The global left-hand-side matrix A  includes the requisite rigid body modes of the discretized structure, 

and, hence, it is singular. By prescribing problem-specific displacement boundary conditions, the resulting 

system of equations can be reduced from Eq. (28a) as 

 R R RΑ U Q  (29e) 

where RΑ  is a positive definite matrix that is always non-singular and invertible. The solution of Eq. (29e) 

is computationally efficient because RΑ  remains unchanged for a given distribution of strain sensors, and 

its inverse should be calculated only once during the real-time monitoring process. However, the right-

hand-side vector RQ  is dependent on the discrete strain data obtained from all strain sensors. Hence, this 

vector needs to be updated at each strain-data acquisition increment. Finally, the matrix–vector 

multiplication 1

R RA Q  gives rise to the unknown DOF vector RU , which provides the deformed structural 

shape corresponding to the given experimental strain data. By using the reconstructed nodal displacements, 

displacements and strains throughout the structure can readily be calculated. Furthermore, by taking 

advantage of the constitutive relations that relate stresses to strains allows one to determine the stress 

distributions across the modeled structure. Finally, to facilitate damage detection as part of the SHM 

process, suitable failure/damage criteria can be invoked. 

6. Example problems and results 

 A simply supported rectangular plate (laminate) with three different lamina stacking sequences 

(uniaxial, cross-ply and angle-ply) has been originally analyzed in Tessler et al. [43] by way of closed form 

solutions of the refined zigzag theory (RZT). The authors obtained superior displacement and stress results 

in comparison to other well-established plate theories:  FSDT and Di Sciuva [54]. Herein, this problem is 

revisited to validate the accuracy of the present iFEM formulation. Following these plate validation cases, 

the present iFEM formulation is further validated using a wedge-like shell structure composed of laminated 

composite and sandwich cross-sections. Detailed distributions of the displacements and stresses are 

examined for all example problems. 

 Example 1: As depicted in Figure 6, the plate has the length a = 1 m , width b = 1 m , and uniform 

thickness 2h = 0.2 m . The plate is subjected to a sinusoidal varying transverse pressure, 

0(X,Y) sin( X / a)sin( Y / b) q q , where the pressure magnitude is 0 1 MPa q . As presented in Figure 
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6, the kinematic variables are defined as follows: U, V, and W  represent the translations along the 

coordinate directions X, Y, and Z , respectively; X Yθ , θ  and X Yψ , ψ  represent bending and zigzag 

rotations around the positive X and Y  directions, respectively. The four edges of the plate are simply 

supported and the following kinematic boundary conditions satisfy the simply supported boundary 

condition of the plate: For cross-ply and uniaxial laminates, the kinematic boundary conditions along X 0  

and X a  are 

 X XV = W = θ  = ψ  = 0  (30a) 

and along Y 0  and Y b  are 

 Y YU = W = θ  = ψ  = 0  (30b) 

For angle-ply laminates, the kinematic boundary conditions along X 0  and X a  are 

 X XU = W = θ  = ψ  = 0  (31a) 

and along Y 0  and Y b  are 

 Y YV = W = θ  = ψ  = 0  (31b) 

 Three different laminates (I, II, III) are considered to represent relatively thick laminated composite and 

sandwich plates with a span-to-thickness ratio of a 2h b 2h 5  . Laminate I is a two-layer, cross-ply 

carbon-epoxy laminate. Laminate II is a three-layer sandwich laminate with uniaxial carbon-epoxy face 

sheets and a thick, closed cell polyvinyl chloride (PVC) core, where PVC is represented as an isotropic 

material. Laminate III is a five-layer, angle-ply sandwich laminate with carbon-epoxy face sheets and a 

thick PVC core. The mechanical material properties and the stacking sequences of the laminates are listed 

in Tables 1-2, respectively. 

 To establish an accurate reference solution, a convergence study was first carried out using direct RZT-

based FEM analyses utilizing an in-house FEM code. The finest mesh consisted of 10,000 uniformly 

distributed triangular elements that possessed 35,707 DOF. For the three laminates (I, II, and III) considered 

in the study, comparisons of the normalized central deflection are summarized in Table 3; where the 

normalization factor of 2 4

11 010 / aD q  is used, with 11D  denoting the bending stiffness coefficient. These 

results clearly demonstrate that the RZT reference FEM solutions are in close agreement with the 

corresponding exact solutions according to RZT [43]. Subsequently, the RZT-FEM reference solutions are 

used to provide the simulated strain-sensor strains. In addition, the reference solutions for the displacements 

and stresses in Tables 4-5 will be used to assess the accuracy of the iFEM predictions for these problems. 

 In the present iFEM analysis, the strain rosettes are regularly distributed, and each strain rosette 

configuration pertains to a discretization with the same number of element subdivisions along the plate 

edges, ne. Three strain rosettes are positioned at the centroid of each element: one on the top surface, one 

on the bottom surface, and one along the interface between the first (bottom) and second material layer. In 

Figure 7, an example of a strain rosette configuration for the ne = 4 discretization is shown.  



 

 22 

 Utilizing the computational procedure described in section 3, the continuous section strains ( E , K ,  
j

M , and G ) are calculated  first.  Then i3-RZT is formulated based on the continuous form of the section 

strains ε . The weighting constants associated with the membrane, bending, and zigzag section strains are 

given the value of unity,  = 1 ( 1 9)   w , whereas the weighting constants corresponding to the 

transverse-shear section strains are set to be sufficiently small, e.g., 8 = 10  ( 10 13)   w . This is 

because the transverse-shear section strains are commonly several orders of magnitude smaller than the 

other section strains, thus the corresponding weighting constants must be much smaller than unity, with 

unity representing the weighting constants on the membrane, bending, and zigzag terms. Consequently, this 

iFEM analysis is expected to provide close agreement between the membrane, bending and zigzag section 

strains and their corresponding measured values, and a lesser correlation of the small-valued transverse-

shear section strains.  

 For each laminate (I, II, and III), the deflections, bending and zigzag rotations, and von Mises stresses 

corresponding to the i3-RZT (iFEM) and RZT (FEM)  analyses are normalized using the reference solutions 

summarized in Tables 4-5. These normalized expressions are given as follows 

 FEM

max X Y X Y vχ χ / χ (χ W,θ ,θ ,ψ ,ψ , )   (32) 

 In Tables 6-8, the percent difference results, based on the i3-RZT (iFEM) and RZT (FEM) solutions for 

the maximum values of the normalized kinematic variables in Eq. (32), are given for various discretization 

models with the varying number of element subdivisions along the plate edges, ne. The results demonstrate 

that i3-RZT (iFEM) provides very accurate response predictions. Even for models which use only a small 

number of strain sensors, e.g., ne = 2, the present iFEM formulation gives accurate displacement and rotation 

predictions that differ from reference values by less than 2.5%. The through-the-thickness distributions for 

the in-plane displacements, and normal and transverse-shear stresses are depicted in Figures 8-17, where 

the quantities are normalized as follows 

 3 4

11 0U(0,0.5b,Z) (10 / a )U(0,0.5b,Z) D q  (33a) 

 2 2

XX 0 XX(0.55a,0.6b,Z) (4h / a ) (0.55a,0.6b,Z)  q  (33b) 

 2

XZ 0 XZ(0.11a,0.2b,Z) (20h / a ) (0.11a,0.2b,Z)  q  (33c) 

In the figures, the legends “iFEM (ne = 4)” and “iFEM (ne = 8)” represent the normalized iFEM solutions 

obtained using strain rosette configurations, ne = 4 and ne = 8, respectively; whereas the legend “Reference” 

represents the normalized FEM reference solutions. For the uniaxial laminate I, the U  and XX  

distributions are accurately computed by the i3-RZT model of the sensor configuration ne = 4, as depicted 

in Figures 8 and 9. There are slight discrepancies in the XZ  distributions (Figure 10), where iFEM (ne = 8) 

is best correlated with the reference solution. Note that all XZ  stress results are obtained using Cauchy's 

three-dimensional equilibrium equations. These XZ  stress distributions are continuous through the 

thickness of the laminates. For sandwich laminates II and III, the iFEM (ne = 4) predictions for the U  

distributions are in close agreement with their corresponding reference solutions and they exhibit a zigzag 
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distribution through the thickness (Figures 11 and 14). In addition, as depicted in Figures 12 and 15, the 

XX  distributions are also accurately computed using the i3-RZT element, where highly accurate normal 

stresses are produced at the face sheets. Furthermore, the XZ  stresses in Figures 13, 16, and 17 demonstrate 

that the iFEM (ne = 4) model can obtain accurate transverse shear stresses that are virtually indistinguishable 

from their corresponding reference solutions both in the face sheets and core of the sandwich laminates II 

and III. These results confirm that the present iFEM formulation is suitable for displacement and stress 

monitoring of relatively thick laminates ( a 2h b 2h 5  ), while relying on a relatively small number of 

strain rosettes. 

 The contour plots of the variables W , Xθ , Yθ , Xψ , Yψ , and v  are compared in Figures 18-23, 

respectively. For conciseness, only contour plots for laminate III (i.e., the most complex laminate 

considered in the study) are shown. The iFEM and FEM results for the maximum W  of laminate III differ 

only by 0.7% (Figure 18). Similar accuracy is achieved for the maximum values of Xθ , Yθ , Xψ , and Yψ , 

where the results differ by  less than 1.0% (Figures 19-22). For the maximum value of v  for laminate III, 

the iFEM and FEM predictions differ from each other by only 0.2% (Figure 23). As can be seen from the 

figures, the iFEM and FEM contours are graphically indistinguishable.  

 Example 2: A wedge structure with a hole near one of the clamped ends is analyzed to demonstrate the 

applicability of i3-RZT (iFEM) to model more complex engineering structures. As depicted in Figure 24, 

the wedge structure has the overall length of 1L  = 6 m , width of 2L  = 2 m , and uniform thickness of 

2h = 0.2 m . The wedge structure is composed of panels A and B, each having its own group coordinate 

system, i.e., (X , Y , Z ) ( =A, B)    . The kinematic variables (U , V , W ) ( A, B)      shown in Figure 

25 represent the translations along the positive coordinate (X , Y , Z ) ( =A, B)     directions, respectively, 

whereas the kinematic variables X Y(θ , θ ) ( A, B)     and X Y(ψ , ψ ) ( A, B)     denote bending and 

zigzag rotations around the positive (X , Y ) ( =A, B)    directions, respectively. Both ends of the wedge 

are clamped, and the clamped boundary conditions along A BX  = X  = 0  and A BX  = X  = 6 m  are specified 

as 

 U = V = W =θ = ψ =0 ( = A,B; = X,Y)        (34) 

 A body force of 3g 100 kN/m  is applied to the wedge structure along the negative AZ  direction (refer 

to Figure 24.)  A five-layer, cross-ply sandwich laminate with carbon-epoxy face sheets and a thick PVC 

core is considered to represent moderately thin sandwich plates with a span-to-thickness ratio of 

1L /2h = 30 . The laminate stacking sequences are summarized in Table 9. 

 Initially, a convergence study using RZT- shell FEM analysis was performed to establish an accurate 

reference solution for this problem. The highest fidelity FEM mesh consisted of 18,802 randomly 

distributed triangular elements with an edge size of 
sizee  = 0.05 m  and 86,535 DOF (refer to Figure 26.) 

The results of this reference model are used to compute the simulated strain-sensor strains. For panels A 

and B, the maximum displacements, von Mises stresses, bending and zigzag rotations obtained from FEM 

analysis are summarized in Tables 10 and 11. These reference values are then used to assess the accuracy 
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of the iFEM analyses. 

 Five different iFEM analyses of the wedge structure were performed using five different networks of 

strain rosettes. Each iFEM analysis refers to a case study number; e.g., the first and third analyses are 

respectively labeled as iFEM (Case I) and iFEM (Case III). Through the thickness coordinate, three strain 

rosettes are located at the centroid of each element for all iFEM cases; one on the top surface, one on the 

bottom surface, and one on the nearest interface to the bottom surface of the laminate. In contrast to 

Example 1, the discrete section strains obtained from FEM analysis were not subjected to initial smoothing. 

Instead, they were directly used as input in iFEM (Cases I-V). Using absolute values of the reference 

solutions summarized in Tables 10 and 11, the displacements, bending and zigzag rotations, and von Mises 

stresses obtained from both iFEM and FEM analyses are normalized as 

 FEM

, max X Y X Y vχ χ  / χ (χ U,V,W,θ ,θ ,ψ ,ψ , )      (35) 

where for panel A, A  , and for panel B, B  . 

 In iFEM (Case I), the i3-RZT discretization is identical to the high-fidelity mesh used in the FEM 

analysis. The i3-RZT model presented in Figure 27 has 18,802 uniformly distributed triangular elements, 

each of which has three strain rosettes ( , , )  j

i i iε ε ε . In iFEM (Case II), the top-surface, bottom-surface, and 

j-th interface strain rosettes are removed from 13,678 i3-RZT elements, and the resulting  

i3-RZT mesh has only 51243 strain rosettes as shown in Figure 28. A coarser i3-RZT discretization is 

used in the last three case studies, iFEM (Cases III-V). As depicted in Figure 29, the coarser i3-RZT 

discretization has 4644 randomly distributed triangular elements with an edge size of sizee  = 0.1 m  and 

21,861 DOF. In iFEM (Case III), as presented in Figure 30, the i3-RZT model has 4644 inverse-elements 

each of which has three strain rosettes ( , , )  j

i i iε ε ε . In iFEM (Case IV), the top-surface, bottom-surface, and 

j-th interface strain rosettes are removed from 2839 i3-RZT elements, and the resulting i3-RZT mesh has 

only 1825 3  strain rosettes (refer to Figure 31). In iFEM (Case V), as shown in Figure 32, the i3-RZT 

model has only 1288 inverse elements that have three strain rosettes ( , , )  j

i i iε ε ε , whereas all  remaining 

3376 elements have no experimental strain data. For an i3-RZT element that has no experimental strain 

data, the corresponding weighting coefficients are set to 10-5. Moreover, the weighting constants 

corresponding to the transverse-shear section strains are set to a small value 8 = 10  ( 10,11)  w ,  and 

6 = 10  ( 12,13)  w  for iFEM (Cases I-V). 

 The results of iFEM (Cases I through V) are compared to the reference FEM results for the maximum 

values of expressions in Eq. (35) for panels A and B in Tables 12 and 13, respectively. The iFEM (Case I) 

results correlate well with the reference solutions for all the variables. These results demonstrate that the 

present iFEM formulation is very accurate when using high-fidelity meshes in which all elements have 

experimental strain measurements. The iFEM (Case II) predictions only differ from the reference FEM 

solutions by less than 4% for panel A and 2% for panel B. These results confirm the superior membrane-

bending coupled predictions of the i3-RZT element, especially considering that a high-fidelity i3-RZT 

model used only a few elements with experimental strain measurements. The iFEM (Case III) solutions for 

displacements and rotations are somewhat less accurate, differing from the reference solutions by less than 

5.6% and 10.8% for panel A and 1.1% and 5.9% for panel B, respectively. These results demonstrate that 
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even when relatively coarse iFEM/i3-RZT discretizations are used, the shape sensing capability is quite 

accurate. Moreover, the iFEM (Case III) solutions for von Mises stresses differ from the FEM solutions by 

approximately 14% for panel A and 15.5% for panel B. Even though these results may still be acceptable 

for some practical applications, they clearly demonstrate that employing high-fidelity iFEM discretizations 

should be advantageous for stress calculations requiring sufficiently accurate high-strain gradient data.  

 The maximum deflections FEM

, maxW  ( A, B)    shown in Table 10 are much greater than the maximum 

in-plane displacements and rotations, thus the deformed shape (total deformation) of the wedge structure is 

mainly caused by the deflections. Hence, the accuracy of monitoring the deflections 
AW  and 

BW  is crucial 

for monitoring total deformation. The iFEM (Case IV) and reference FEM results for 
AW  and 

BW  are only 

2.3% and 2.0%, and the iFEM (Case V) predictions for 
AW  and 

BW  differ from the FEM predictions by 

only 3.8% and 4.9%, respectively. These results demonstrate that iFEM predictions remain sufficiently 

accurate even considering a coarse i3-RZT model with the missing strain rosette data in many elements. 

Also, these results demonstrate the i3-RZT excellent shape-sensing capability, even though Cases IV and 

V are less accurate in terms of relatively small in-plane displacements and rotations. Furthermore, the iFEM 

(Cases IV and V) and FEM results for von Mises stresses do not exceed 14.6% and 15.5% for panels A and 

B, respectively. The accuracy of these results is similar to the iFEM (Case III). Hence, these results 

demonstrate that even when few elements have strain rosette data sufficiently accurate results can be 

obtained using iFEM models based on i3-RZT.  

 In Figures 33-40, contour plots for the normalized quantities in Eq. (35) are compared between iFEM 

(Case IV) and the FEM reference solutions, noting that iFEM (Case IV) is the most challenging of the 

examples considered in this study. The compared solutions in Figures 35-37, 39 and 40 are in close 

agreement and graphically indistinguishable. In Figures 33, 34, and 38 there is generally good agreement 

even for the models which have many elements that do not have measured strains.  

 Although relatively coarse iFEM discretizations with a large number of strain rosettes, as in Case V, 

generally yield satisfactory results, the use of such large numbers of strain rosettes (1,288 3  for Case V) 

may be impractical. Alternatively, an array of FBG sensors can be used, providing a large number of 

uniaxial strain measurements along the fiber directions. Thus, the iFEM Cases II, IV, and V, in which only 

several locations of the wedge are instrumented with strain sensors, are now examined.  In these cases, as 

depicted in Figures 28, 31, and 32, each yellow colored i3-RZT element has an FBG sensor aligned with 

the X  ( =A, B)   axes for panels A and B, respectively. To differentiate these FBG-sensor models from 

those with strain rosettes, these models are labeled as Cases II-, IV-, and V-FBG. For these models, the 

weighting constants corresponding to the section strains along Y  ( =A, B)   and in the X -Y  ( =A, B)    

planes are set as 8 = 10  ( 10,11)  w , since FBG sensors do not provide any strain measurements along 

these directions.  

 The iFEM (Case II-, IV-, and V-FBG) and FEM contour plots for the 
AW  and 

BW  deflections and the 

vA  and vB  von Mises stresses are compared in Figures 41-46. These results demonstrate that in iFEM 

(Case II-FBG) the maximum 
AW  and 

BW  displacements are underestimated by about 1.5% and 1.6%, 

respectively, whereas the maximum von Mises stresses differ from the FEM predictions by 2.7% (see 
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Figures 41 and 42). Moreover, for Cases IV- and V-FBG, the iFEM predictions differ from those of FEM 

by 5.8% for the maximum deflections, and by 12.6% for the maximum von Mises stresses (refer to Figures 

43-46). Furthermore, the iFEM and FEM contour plots compare closely in regions of maximum 

displacements and stresses. These results clearly demonstrate that the iFEM/i3-RZT methodology produces 

relatively accurate deformation and stress predictions even when only uniaxial FBG strains are available, 

thus ensuring the practical aspect of this computational methodology.  

 Finally, in Figures 47-50, von Mises stresses vA  along edges  1L  and 2L  are compared to the FEM 

reference solutions for Cases II, V, II-FBG, and V-FBG. From these results we conclude that: (1) 

sufficiently accurate von Mises stresses can be recovered even when uniaxial FBG strain sensors are used 

in a relatively sparse manner (Figures 47-49), and (2) higher fidelity iFEM discretizations are required to 

model high-strain gradients in order to obtain improved stresses (Figure 50).  

7. Conclusions 

 An improved iFEM formulation is presented to solve the inverse problem of shape and stress sensing of 

multilayered composite and sandwich plates/shells that have randomly distributed strain sensors. The 

plate/shell kinematics are described using RZT plate theory. The formulation is based on minimization of 

a weighted-least-squares functional that accounts for the complete set of section strains (or strain measures) 

consistent with RZT plate theory. Based on the present iFEM methodology, laminated composite and 

sandwich plate/shell structures that involve relatively few strain gauges can be analyzed by utilizing 

weighting constants. One advantage of the present iFEM methodology is that it can be used for the analysis 

of thin and moderately thick plate and shell structures because the variational principle accommodates the 

full transverse-shear deformation of the RZT plate theory. Moreover, the formulation is suitable for C0-

continuous discretization, enabling the development of robust inverse-shell elements for performing shape 

and stress sensing of complex engineering structures.  

 A new three-node triangular inverse-shell element (i3-RZT) was developed based on the improved 

iFEM formulation. The i3-RZT element kinematic field accommodates quadratic interpolation functions 

that permit a robust drilling DOF implementation that has the advantage of avoiding singular solutions 

when modeling complex shell structures. The formulation is free from the membrane and shear-locking 

phenomena. Several numerical studies were performed and demonstrated the computational efficiency, 

high accuracy, and robustness of i3-RZT discretization with respect to the membrane, bending, and 

membrane-bending coupled structural responses. The practical utility of iFEM/i3-RZT technology for 

application to engineering structures has been assessed using relatively low- and high-fidelity discretization 

strategies.  

 The effects of sensor locations and number of sensors were also explored. The fact that the formulation 

requires a set of strain sensors positioned between material layers does not present any implementation 

difficulties of this technology since current composites manufacturing methods can readily accommodate 

embedded sensors. It was also demonstrated that even in the presence of relatively sparse strain data, 

sufficiently accurate reconstruction of deformed structural shapes and stresses can be achieved for the 

problems considered herein. Finally, the iFEM/i3-RZT methodology can be readily implemented within 

any general-purpose finite element software (e.g., NASTRAN, ABAQUS, or ANSYS), thus providing a 

highly desirable and viable computational tool for real-time structural health monitoring of laminated-
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composite and sandwich structures used in high-performance aerospace vehicles. 

Appendix A 

 The anisoparametric shape functions interpolating the kinematic variables in Eqs. (21, 22) are defined 

as 

  ( , )
2

  i
i i k j j k

N
L L x y b N b N  (A.1) 

  ( , )
2

  i
i i j k k j

N
M M x y a N a N  (A.2) 

 ( , )
2

 
  i i i i

i i

e e

A b x a y c
N N x y

A A
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with 

  ;    1,2,3;   2,3,1;   3,1,2      i k j i j ka x x b y y i j k  (A.4) 

where iN  are linear area-parametric coordinates, iL  and iM  are quadratic shape functions, and eA  is the 

area of the triangle. 

Appendix B 

 The matrices  ( 1 13)   B  used in Eqs. (23a-e) contain derivatives of the shape functions and are 

defined as 
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Note that iN , iL , and iM  are the shape functions of the i3-RZT element, which are explicitly given in 

Appendix A. 

References 

 

[1] Glisic, B., and Inaudi, D., 2008. Fibre optic methods for structural health monitoring. John Wiley 

& Sons. 

 

[2] Herrmann, A.S., Zahlen, P.C., and Zuardy, I., 2005. Sandwich structures technology in 

commercial aviation. In Sandwich structures 7: Advancing with sandwich structures and 

materials (pp. 13-26). Springer Netherlands. In: Proceedings of the 7th international conference 

on sandwich structures (ICSS-7), Aalborg; 29–31 August 2005. pp. 13–26. 

 

[3] Berggreen, C., Branner, K., Jensen, J.F., and Schultz, J.P., 2007. Application and analysis of 

sandwich elements in the primary structure of large wind turbine blades. Journal of Sandwich 

Structures and Materials, 9(6), pp. 525-552. 

  

[4] Lolive, E., Casari, P., and Davies, P., 2005. Loading rate effects on foam cores for marine 

sandwich structures. In Sandwich structures 7: Advancing with sandwich structures and materials 

(pp. 895-903). Springer Netherlands. In: Proceedings of the 7th international conference on 

sandwich structures (ICSS-7), Aalborg; 29–31 August 2005. pp. 895–903. 

 

[5] Zou, Y., Tong, L.P.S.G., and Steven, G.P., 2000. Vibration-based model-dependent damage 

(delamination) identification and health monitoring for composite structures—a review. Journal 

of Sound and Vibration, 230(2), pp. 357-378. 

 



 

 29 

[6] McCartney, L.N., 1987. Mechanics of matrix cracking in brittle-matrix fibre-reinforced 

composites. In Proceedings of the Royal Society of London A: Mathematical, Physical and 

Engineering Sciences (Vol. 409, No. 1837, pp. 329-350). The Royal Society. 

 

[7] Vadakke, V., and Carlsson, L.A., 2004. Experimental investigation of compression failure of 

sandwich specimens with face/core debond. Composites Part B: Engineering, 35(6), pp. 583-590. 

 

[8] Bray, D.E., and McBride, D., 1992. Nondestructive testing techniques. NASA STI/Recon 

Technical Report A, 93. 

 

[9] Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., and Tessler, A., 2012. Shape sensing 

of 3D frame structures using an inverse finite element method. International Journal of Solids 

and Structures, 49(22), pp. 3100-3112. 

 

[10] Tikhonov, A. N., and Arsenin, V. Y., 1977. Solutions of ill-posed problems. Winston, 

Washington, DC. 

 

[11] Liu, P. L., and Lin, H. T., 1996. Direct identification of non-uniform beams using static strains. 

International Journal of Solids and Structures, 33(19), pp. 2775-2787. 

 

[12] Maniatty, A. M., and Zabaras, N. J., 1994. Investigation of regularization parameters and error 

estimating in inverse elasticity problems. International Journal for Numerical Methods in 

Engineering, 37(6), pp. 1039-1052. 

 

[13] Schnur, D. S., and Zabaras, N., 1990. Finite element solution of two‐dimensional inverse elastic 

problems using spatial smoothing. International Journal for Numerical Methods in Engineering, 

30(1), pp. 57-75. 

 

[14] Davis, M. A., Kersey, A. D., Sirkis, J., and Friebele, E. J., 1996. Shape and vibration mode 

sensing using a fiber optic Bragg grating array. Smart Materials and Structures, 5(6), pp. 759. 

 

[15] Kang, L. H., Kim, D. K., and Han, J. H., 2007. Estimation of dynamic structural displacements 

using fiber Bragg grating strain sensors. Journal of Sound and Vibration, 305(3), pp. 534-542. 

 

[16] Kim, N. S., and Cho, N. S., 2004. Estimating deflection of a simple beam model using fiber optic 

Bragg-grating sensors. Experimental Mechanics, 44(4), pp. 433-439. 

 

[17] Ko, W. L., Richards, W. L., and Fleischer, V. T., 2009. Applications of Ko displacement theory 

to the deformed shape predictions of the doubly-tapered Ikhana Wing. NASA/TP-2009-214652. 

 

[18] Chierichetti, M., 2014. Load and response identification for a nonlinear flexible structure subject 

to harmonic loads. Journal of Computational and Nonlinear Dynamics, 9(1), pp. 011009. 

 



 

 30 

[19] Derkevorkian, A., Masri, S. F., Alvarenga, J., Boussalis, H., Bakalyar, J., and Richards, W. L., 

2013. Strain-based deformation shape-estimation algorithm for control and monitoring 

applications. AIAA Journal, 51(9), pp. 2231-2240. 

 

[20] Jones, R. T., Bellemore, D. G., Berkoff, T. A., Sirkis, J. S., Davis, M. A., Putnam, M. A., and 

Kersey, A. D., 1998. Determination of cantilever plate shapes using wavelength division 

multiplexed fiber Bragg grating sensors and a least-squares strain-fitting algorithm. Smart 

Materials and Structures, 7(2), pp. 178. 

 

[21] Shkarayev, S., Krashantisa, R., and Tessler, A., 2001. An inverse interpolation method utilizing 

in-flight strain measurements for determining loads and structural response of aerospace vehicles. 

In: Proceedings of 3rd International Workshop on Structural Health Monitoring, Stanford, 

California. 

 

[22] Shkarayev, S., Raman, A., and Tessler, A., 2002. Computational and experimental validation 

enabling a viable in-flight structural health monitoring technology. In: Proceedings of 1st 

European Workshop on Structural Health Monitoring, Cachan, Paris, France. 

 

[23] Bogert, P. B., Haugse, E. D., and Gehrki, R. E., 2003. Structural shape identification from 

experimental strains using a modal transformation technique. In: Proceedings of 44th 

AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Norfolk, 

Virginia. 

 

[24] Nishio, M., Mizutani, T., and Takeda, N., 2010. Structural shape reconstruction with 

consideration of the reliability of distributed strain data from a Brillouin-scattering-based optical 

fiber sensor. Smart Materials and Structures, 19(3), pp. 035011. 

 

[25] Tessler, A., and Spangler, J. L., 2003. A variational principal for reconstruction of elastic 

deformation of shear deformable plates and shells. NASA TM-2003-212445. 

 

[26] Tessler, A., and Spangler, J. L., 2005. A least-squares variational method for full-field 

reconstruction of elastic deformations in shear-deformable plates and shells. Computer Methods 

in Applied Mechanics and Engineering, 194(2), pp. 327-339. 

 

[27] Stoesz, C. W., 2013. Method For Analyzing Strain Data. US 8,515,675 B2. 

 

[28] Tessler, A., and Spangler, J. L., 2004. Inverse FEM for full-field reconstruction of elastic 

deformations in shear deformable plates and shells. In: Proceedings of 2nd European Workshop 

on Structural Health Monitoring, Munich, Germany. 

 

[29] Quach, C. C., Vazquez, S. L., Tessler, A., Moore, J. P., Cooper, E. G., and Spangler, J. L., 2005. 

Structural anomaly detection using fiber optic sensors and inverse finite element method. In: 

Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, 

California. 



 

 31 

 

[30] Vazquez, S. L., Tessler, A., Quach, C. C., Cooper, E. G., Parks, J., and Spangler J. L., 2005. 

Structural health monitoring using high-density fiber optic strain sensor and inverse finite 

element methods. NASA TM-2005-213761. 

 

[31] Tessler, A., Spangler, J. L., Gherlone M., Mattone M., and Di Sciuva, M., 2012. Deformed shape 

and stress reconstruction in plate and shell structures undergoing large displacements: application 

of inverse finite element method using fiber bragg grating strains. In: Proceedings of 10th World 

Congress on Computational Mechanics, Sao Paulo, Brazil. 

 

[32] Kefal, A., Oterkus, E., Tessler, A., and Spangler, J.L., 2016. A quadrilateral inverse-shell element 

with drilling degrees of freedom for shape sensing and structural health monitoring. Engineering 

Science and Technology, an International Journal, 19, pp. 1299-1313. 

 

[33] Cerracchio, P., Gherlone, M., Mattone, M., Di Sciuva, M., and Tessler, A., 2010. Shape sensing 

of three-dimensional frame structures using the inverse finite element method. In: Proceedings 

of 5th European Workshop on Structural Health Monitoring, Sorrento, Italy. 

 

[34] Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., and Tessler, A., 2011. Beam shape 

sensing using inverse finite element method: theory and experimental validation. In: Proceeding 

of 8th International Workshop on Structural Health Monitoring, Stanford, CA 

 

[35] Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., and Tessler, A., 2014. An inverse 

Finite Element Method for beam shape sensing: theoretical framework and experimental 

validation. Smart Materials and Structures, 23(4), pp. 045027. 

 

[36] Tessler, A. 2007. Structural analysis methods for structural health management of future 

aerospace vehicles. Key Engineering Materials, 347, pp. 57-66. 

 

[37] Tessler, A., Spangler, J. L., Gherlone, M., Mattone, M., and Di Sciuva, M., 2011. Real-Time 

characterization of aerospace structures using onboard strain measurement technologies and 

inverse finite element method. In: Proceedings of the 8th International Workshop on Structural 

Health Monitoring, Stanford, California. 

 

[38] Kefal, A., and Oterkus, E., 2017. Shape sensing of aerospace structures by coupling of 

isogeometric analysis and inverse finite element method. In: Proceedings of the 58th 

AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Grapevine, 

TX. 

 

[39] Kefal, A., and Oterkus, E., 2015. Structural Health Monitoring of marine structures by using 

inverse Finite Element Method. Analysis and Design of Marine Structures V, pp. 341. 

 

[40] Kefal, A., and Oterkus, E., 2016. Displacement and stress monitoring of a chemical tanker based 

on inverse finite element method. Ocean Engineering, 112, pp. 33-46. 



 

 32 

 

[41] Kefal, A., and Oterkus, E., 2016. Displacement and stress monitoring of a Panamax containership 

using inverse finite element method. Ocean Engineering, 119, pp. 16-29. 

 

[42] Kefal, A., and Oterkus, E., 2017. Shape and stress sensing of offshore structures by using inverse 

finite element method. Progress in the Analysis and Design of Marine Structures, pp. 141-148. 

 

[43] Tessler, A., Di Sciuva, M., and Gherlone, M., 2010. A consistent refinement of first-order shear 

deformation theory for laminated composite and sandwich plates using improved zigzag 

kinematics. Journal of Mechanics of Materials and Structures, 5(2), pp. 341-367. 

 

[44] Cerracchio, P., Gherlone, M., Di Sciuva, M., and Tessler, A., 2013. Shape and stress sensing of 

multilayered composite and sandwich structures using an inverse Finite Element Method. In: 

Proceedings of V International Conference on Computational Methods for Coupled Problems in 

Science and Engineering, Ibiza, Spain. 

 

[45] Cerracchio, P., Gherlone, M., Di Sciuva, M., and Tessler, A., 2015. A novel approach for 

displacement and stress monitoring of sandwich structures based on the inverse Finite Element 

Method. Composite Structures, 127, pp. 69-76. 

 

[46] Tessler, A., Riggs, H. R., Freese, C. E., and Cook, G. M., 1998. An improved variational method 

for finite element stress recovery and a posteriori error estimation. Computer Methods in Applied 

Mechanics and Engineering, 155(1), pp. 15-30. 

 

[47] Tessler, A., Riggs, H. R., and Dambach, M., 1999. A novel four-node quadrilateral smoothing 

element for stress enhancement and error estimation. International Journal for Numerical 

Methods in Engineering, 44(10), pp. 1527-1541. 

 

[48] Tessler, A., and Dong, S.B., 1981. On a hierarchy of conforming Timoshenko beam elements. 

Computers & Structures, 14(3), pp. 335-344. 

 

[49] Tessler, A., 2000. Comparison of interdependent interpolations for membrane and bending 

kinematics in shear-deformable shell elements. In: Proceedings of international conference on 

computational engineering and sciences, Los Angeles, CA. 

 

[50] Bathe, K. J., 2006. Finite element procedures. Klaus-Jurgen Bathe. 

 

[51] Tessler, A., and Hughes, T.J., 1985. A three-node Mindlin plate element with improved 

transverse shear. Computer Methods in Applied Mechanics and Engineering, 50(1), pp. 71-101. 

 

[52] Versino, D., Gherlone, M., Mattone, M., Di Sciuva, M., and Tessler, A., 2013. C0 triangular 

elements based on the Refined Zigzag Theory for multilayer composite and sandwich plates. 

Composites Part B: Engineering, 44(1), pp .218-230. 

 



 

 33 

[53] Pagano, N.J., 1994. Exact solutions for composite laminates in cylindrical bending. In Mechanics 

of Composite Materials (pp. 72-85). Springer Netherlands. 

 

[54] Di Sciuva, M., 1984. A refinement of the transverse shear deformation theory for multilayered 

orthotropic plates. In: Atti del VII Congresso Nazionale AIDAA (Naples, 1983), edited by A. 

Marchese, ESA, Rome, 1984. Also In: Aerotecnica Missili e Spazio 63 (1984), pp. 84–92. 

 

[55] Beukema, R.P., 2012. Embedding technologies of FBG sensors in composites: Technologies, 

applications and practical use. In: Proceedings of the 6th European Workshop on Structural 

Health Monitoring, Dresden, Germany. 

 

 

Table 1. Mechanical properties of orthotropic material (C) and isotropic material (P). 

Lamina material 
Young’s modulus 

[GPa] 
Poisson’s ratio 

Shear modulus 

[GPa] 

C 

Carbon-epoxy 

unidirectional 

composite 

( )

1

( )

2

( )

3

157.9

9.584

9.584







k

k

k

E

E

E

 

( )

12

( )

13

( )

23

0.32

0.32

0.49













k

k

k

 

( )

12

( )

13

( )

23

5.930

5.930

3.227







k

k

k

G

G

G

 

P PVC core ( ) 0.104kE  ( ) 0.3 k  ( ) 0.04kG  

 

Table 2. Laminate stacking sequences (lamina sequence is in the positive z direction). 

Laminate 
Normalized lamina 

thickness, ( )h / hk  

Lamina 

materials 

Lamina 

orientation [  ] 

I Cross-ply composite (0.5/0.5) (C/C) (0/90) 

II Uniaxial sandwich (0.1/0.8/0.1) (C/P/C) (0/0/0) 

III Angle-ply sandwich (0.05/0.05/0.8/0.05/0.05) (C/C/P/C/C) (30/-45/0/45/-30) 

 

Table 3. Normalized maximum (central) deflection, 2 4

11 0w (10 / a )W(0.5a,0.5b) D q . 

Laminate 
Normalization factor 

( 2 4

11 010 / aD q ) 

RZT analytic ( w ) 

(Tessler et al., [43]) 
FEM ( w ) 

I 5617.72 1.219 1.219 

II 5173.04 29.785 29.775 

III 2448.38 14.105 14.101 
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Table 4. FEM results for the maximum deflections von Mises stresses of the simply supported plate. 

Laminate FEM

maxW  [m] 
FEM

v, max  [Pa] 

I 42.169 10   71.306 10  

II 35.756 10   61.397 10  

III 35.759 10   72.587 10  

 

Table 5. FEM results for the maximum bending and zigzag rotations of the simply supported plate. 

Laminate 
FEM

X, maxθ  [rad] FEM

Y, maxθ  [rad] FEM

X, maxψ  [rad] FEM

Y, maxψ  [rad] 

I 45.128 10  45.128 10  55.520 10  55.520 10  

II 34.009 10  31.913 10  21.415 10  21.607 10  

III 32.732 10  31.571 10  21.538 10  21.652 10   

 

Table 6. Comparison of iFEM to FEM results for maximum values of kinematic variables for laminate I. 

ne 
Percent difference 

W  Xθ  Yθ  Xψ  Yψ  

2 1.75 2.08 2.08 2.10 2.10 

4 1.57 0.70 0.70 0.93 0.93 

6 0.28 0.16 0.16 0.66 0.66 

8 0.15 0.05 0.05 0.26 0.26 

10 0.00 0.04 0.04 0.28 0.28 

 

Table 7. Comparison of iFEM to FEM results for maximum values of kinematic variables for laminate II. 

ne 
Percent difference 

W  Xθ  Yθ  Xψ  Yψ  

2 1.42 2.26 1.67 1.92 2.13 

4 0.74 0.78 0.53 0.66 0.72 

6 0.08 0.12 0.21 0.08 0.17 

8 0.06 0.09 0.02 0.06 0.06 

10 0.00 0.05 0.03 0.06 0.04 
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Table 8. iFEM to FEM comparisons for maximum values of kinematic variables for laminate III. 

ne 
Percent difference 

W  Xθ  Yθ  Xψ  Yψ  

2 1.25 2.00 1.52 1.74 1.90 

4 0.74 0.75 0.55 0.66 0.70 

6 0.09 0.06 0.07 0.01 0.12 

8 0.06 0.11 0.05 0.09 0.08 

10 0.01 0.06 0.06 0.08 0.05 

 

Table 9. Wedge laminate stacking sequences (lamina sequence is in the positive z direction). 

Wedge Laminate 
Normalized lamina 

thickness, ( )h / hk  

Lamina 

materials 

Lamina 

orientation [  ] 

Cross-ply sandwich (0.05/0.05/0.8/0.05/0.05) (C/C/P/C/C) (0/90/0/90/0) 

 

Table 10. FEM results for the maximum displacements and von Mises stresses of the wedge structure. 

  FEM

, maxU  [m] FEM

, maxV  [m] FEM

, maxW  [m] FEM

v , max  [Pa] 

A 54.353 10   42.059 10   21.389 10   
79.874 10  

B 41.101 10   48.601 10  21.031 10   
79.238 10  

 

Table 11. FEM results for the maximum bending and zigzag rotations of the wedge structure. 

  FEM

X , maxθ   [rad] FEM

Y , maxθ   [rad] FEM

X , maxψ   [rad] FEM

Y , maxψ   [rad] 

A 36.119 10  31.243 10  31.350 10   37.128 10   

B 36.084 10  
31.120 10  

32.117 10   
35.314 10  
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Table 12. Comparison of iFEM (Cases I-V) to FEM results for maximum values of variables for panel A. 

Case 
Percent difference 

AU  
AV  

AW  
XAθ  

YAθ  XAψ  YAψ  vA  

I 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 

II 0.1 0.0 0.0 1.1 3.7 2.8 0.0 0.2 

III 5.6 0.8 1.0 0.8 0.8 10.8 1.7 14.0 

IV 12.4 22.5 2.3 9.0 3.3 7.6 3.8 14.6 

V 18.1 52.2 3.8 19.4 7.7 3.2 4.7 14.5 

 

Table 13. Comparison of iFEM (Cases I-V) to FEM results for maximum values of variables for panel B. 

Case 
Percent difference 

BU  
BV  

BW  
XBθ  

YBθ  XBψ  YBψ  vB  

I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 

II 0.2 0.3 0.0 1.1 0.1 1.7 0.0 0.2 

III 1.1 0.7 1.1 0.8 5.9 5.7 2.4 15.5 

IV 3.6 0.3 2.0 9.1 8.5 6.4 5.0 15.5 

V 5.1 2.5 4.9 19.5 21.5 8.5 5.8 15.5 

 

 

 

Figure 1. RZT-based iFEM plate notation. 
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Figure 2. Layer notation for a three-layer laminate. 

 

 

Figure 3. Strain rosettes and experimental surface strain measurements. 

 



 

 38 

 

Figure 4. iFEM/SEA computational procedure. 
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Figure 5. The i3-RZT inverse-shell element and its nodal DOF. 

 

 

Figure 6. Simply supported plate subjected to sinusoidal varying pressure. 

 

 

Figure 7. Strain rosette configuration of simply supported plate for discretization ne = 4. 
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Figure 8. Through-thickness distribution of in-plane displacement U(0,0.5b,Z)  for laminate I. 

 

 

Figure 9. Through-thickness distribution of in-plane stress XX (0.55a,0.6b,Z)  for laminate I. 
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Figure 10. Through-thickness distribution of transverse-shear stress XZ (0.11a,0.2b,Z)  for laminate I. 

 

Figure 11. Through-thickness distribution of in-plane displacement U(0,0.5b,Z)  for laminate II. 
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Figure 12. Through-thickness distribution of in-plane stress XX (0.55a,0.6b,Z)  for laminate II. 

 

Figure 13. Through-thickness distribution of transverse-shear stress XZ (0.11a,0.2b,Z)  for laminate II. 
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Figure 14. Through-thickness distribution of in-plane displacement U(0,0.5b,Z)  for laminate III. 

 

 

Figure 15. Through-thickness distribution of in-plane stress XX (0.55a,0.6b,Z)  for laminate III. 
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Figure 16. Through-thickness distribution of transverse-shear stress XZ (0.11a,0.2b,Z)   for laminate III. 

 

 

 (a)                (b) 

Figure 17. Close-up views of transverse-shear stresses in Figure 16 in the range of (a) Z / h [ 1, 0.8]    

and (b) Z / h [0.8,1] . 
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Figure 18. Contour plots of W  displacement for laminate III: Comparison of high-fidelity FEM and 

iFEM (ne = 4) results. 

 

 

Figure 19. Contour plots of 
Xθ  bending rotation for laminate III: Comparison of high-fidelity FEM and 

iFEM (ne = 4) results. 
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Figure 20. Contour plots of 
Yθ  bending rotation for laminate III: Comparison of high-fidelity FEM and 

iFEM (ne = 4) results. 

 

 

Figure 21. Contour plots of Xψ  zigzag rotation for laminate III: Comparison of high-fidelity FEM and 

iFEM (ne = 4) results. 

 



 

 47 

 

Figure 22. Contour plots of Yψ  zigzag rotation for laminate III: Comparison of high-fidelity FEM and 

iFEM (ne = 4) results. 

 

 

Figure 23. Contour plots of von Mises stress v (Z / h 1)    of laminate III: Comparison of high-fidelity 

FEM and iFEM (ne = 4) results. 
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Figure 24. Isometric view of the wedge structure. 

 

 

Figure 25. Panels A and B, group coordinate systems, and kinematic variables. 
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Figure 26. Discretization (18,802 elements) of wedge structure. 

 

 

Figure 27. iFEM (Case I) model. 
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Figure 28. iFEM (Case II) model. 

 

 

Figure 29. Discretization (4,644 elements) of wedge structure. 
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Figure 30. iFEM (Case III) model. 

 

 

Figure 31. iFEM (Case IV) model. 

 



 

 52 

 

Figure 32. iFEM (Case V) model. 

 

  

                                     Panel A                                                           Panel B 

Figure 33. Contour plots of 
A BU  and U  displacements for panels A and B: Comparison of high-fidelity 

FEM and iFEM (Case IV) results. 
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                                     Panel A                                                           Panel B 

Figure 34. Contour plots of 
A BV  and V  displacements for panels A and B: Comparison of high-fidelity 

FEM and iFEM (Case IV) results. 

 

  

                                     Panel A                                                           Panel B 

Figure 35. Contour plots of 
A BW  and W  displacements for panels A and B: Comparison of high-fidelity 

FEM and iFEM (Case IV) results. 
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                                     Panel A                                                           Panel B 

Figure 36. Contour plots of 
XA XBθ  and θ  bending rotations for panels A and B: Comparison of high-

fidelity FEM and iFEM (Case IV) results. 

 

  

                                     Panel A                                                           Panel B 

Figure 37. Contour plots of 
YA YBθ  and θ  bending rotations for panels A and B: Comparison of high-

fidelity FEM and iFEM (Case IV) results. 
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                                     Panel A                                                           Panel B 

Figure 38. Contour plots of XA XBψ  and ψ  zigzag rotations for panels A and B: Comparison of high-

fidelity FEM and iFEM (Case IV) results. 

 

  

                                     Panel A                                                           Panel B 

Figure 39. Contour plots of YA YBψ  and ψ  zigzag rotations for panels A and B: Comparison of high-

fidelity FEM and iFEM (Case IV) results. 
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                                     Panel A                                                           Panel B 

Figure 40. Contour plots of von Mises stresses vA A(Z / h 1)    and vB B(Z / h 1)   for panels A and B: 

Comparison of high-fidelity FEM and iFEM (Case IV) results. 

 

  

                                     Panel A                                                           Panel B 

Figure 41. Contour plots of 
A BW  and W  displacements for panels A and B: Comparison of high-fidelity 

FEM and iFEM (Case II-FBG) results. 
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                                     Panel A                                                           Panel B 

Figure 42. Contour plots of von Mises stresses vA A(Z / h 1)    and vB B(Z / h 1)   for panels A and B: 

Comparison of high-fidelity FEM and iFEM (Case II-FBG) results. 

 

 

  

                                     Panel A                                                           Panel B 

Figure 43. Contour plots of 
A BW  and W  displacements for panels A and B: Comparison of high-fidelity 

FEM and iFEM (Case IV-FBG) results. 
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                                     Panel A                                                           Panel B 

Figure 44. Contour plots of von Mises stresses vA A(Z / h 1)    and vB B(Z / h 1)   for panels A and B: 

Comparison of high-fidelity FEM and iFEM (Case IV-FBG) results. 

 

  

                                     Panel A                                                           Panel B 

Figure 45. Contour plots of 
A BW  and W  displacements for panels A and B: Comparison of high-fidelity 

FEM and iFEM (Case V-FBG) results. 
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                                     Panel A                                                           Panel B 

Figure 46. Contour plots of von Mises stresses vA  and vB  at thickness coordinates AZ  / h 1   and 

BZ  / h 1  for panels A and B: Comparison of high-fidelity FEM and iFEM (Case V-FBG) results. 

 

 

 

Figure 47. Distribution of von Mises stress vA  along length 1L  of panel A: Comparison of high-fidelity 

FEM and iFEM (Case II) results. 
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Figure 48. Distribution of von Mises stress vA  along length 1L  of panel A: Comparison of high-fidelity 

FEM and iFEM (Case V) results. 

 

Figure 49. Distribution of von Mises stress vA  along width 2L  of panel A: Comparison of high-fidelity 

FEM and iFEM (Case II) results. 
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Figure 50. Distribution of von Mises stress vA  along width 2L  of panel A: Comparison of high-fidelity 

FEM and iFEM (Case V) results. 
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