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In support of advanced air revitalization technologies to enable human spaceflight 

beyond low earth orbit, performance studies have been conducted using a liquid amine, 

Diglycolamine (DGA) between teams at NASA’s Johnson Spaceflight Center (JSC) and 

Ames Research Center (ARC). Liquid amines have been used in regenerable earth-based 

systems to remove CO2 from industrial systems as well as for closed-environment air 

revitalization because they can be regenerated at lower temperatures than solid sorbent 

systems. As an additional advantage to solid sorbent-based systems, liquid sorbents can be 

cycled between an adsorbing contactor and degassing chamber, thereby reducing system 

complexity by operation in a continuous loop. In an effort to inform a regeneration system 

design for micro-gravity applications, ARC has performed a number of tests to characterize 

the degas mechanics of DGA. In order to accurately measure the amount of CO2 captured or 

released by the amine, methods such as gravimetric weighing and chemical desorption are 

reasonable, however the first iteration test setup for a scaled down degas system required 

analysis on small sample sizes. Fourier-transform infrared spectroscopy (FTIR) analysis was 

experimentally evaluated to analyze CO2 concentration because it can produce 

measurements with sample sizes on the order of 100’s of µL. Calibration against chemical 

desorption showed relatively good correlation and test data showed reasonable adherence to 

expected trends, however more extensive testing should be conducted to fully validate the 

usage of FTIR to determine CO2 loading on DGA. 

Nomenclature 

ARC = NASA Ames Research Center 

CO2 = Carbon Dioxide 

DGA = Diglycolamine 

FTIR = Fourier-transform infrared spectroscopy 

H2S = Hydrogen Sulfide 

JSC = NASA Johnson Space Center 

MEA = Monoethanolamine 

N2 = Nitrogen 

ZnSe = Zinc Selenide 
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I. Introduction and Technical Background 

ARBON dioxide capture technologies are currently being investigated for potential future flight systems to 

support human space exploration. In an effort to aid in the design of a liquid amine sorbent system led by 

NASA Johnson Space Center (JSC), NASA Ames Research Center (ARC) has begun the work in characterizing the 

desorption kinetics of Diglycolamine (DGA), a liquid amine that was down-selected for usage in the proposed 

system.1 A baseline design for a degassing unit was developed by JSC that relied on capillary flow to allow for 

direct liquid-to-air contact while maintaining liquid flow control.2 This degassing unit was proposed to utilize a 

multitude of “V” shaped channels, hereby referred to as “V-channels,” to take advantage of capillary flow. The work 

done at ARC was built upon this initial design, and the regeneration characteristics reported in this paper pertain to 

this specific configuration. Given the complexity of building a multi-channel system and the restraint of performing 

characterization in a 1-g environment, designs were made at ARC to build a single V-channel degasser with the goal 

of characterizing the degas mechanics at a fractional scale of the proposed system. Also, due to the scale of the 

benchtop system and instrumentation limitations, measuring the CO2 released by the DGA would be a challenge 

itself. Due to the high temperature of the degas environment, it was impossible to use an immersion-based CO2 

probe. The vapor pressure of the DGA also proved to be problematic if trying to use a CO2 probe in a closed 

circulated gas loop, since initial regeneration efforts revealed that DGA had a significant evaporation rate and would 

likely contaminate a probe.  

 Efforts to characterize CO2 loading on DGA included measuring the liquid pH, viscosity, Raman spectroscopy, 

chemical desorption, and Fourier Transform Infrared spectroscopy (FTIR). Measurement efforts using pH and 

Raman spectroscopy failed to produce discernable results. Viscosity measurements yielded good results, since DGA 

viscosity increases with increasing CO2 loading, however one of the design considerations was to be able to dilute 

the DGA in a water solution. This would not be a problem for adsorption characterization, but since the regeneration 

process requires heat, the solution would lose a significant amount of water to evaporation/boiling, thereby skewing 

viscosity results. Chemical desorption has been described as a viable method of recapturing and measuring CO2 

loading from a DGA solution1, and initial verification at ARC agreed with previous assessments. This method of 

mixing a strong acid into a solution of amine loaded with CO2 lowers the pH of the solution, which releases the CO2 

from the amine. This process will hereby be referred to as “pH desorption”. While pH desorption can be depended 

on to provide an accurate measurement of CO2 loading on DGA, the sample amount required to provide discernable 

data is approximately 1mL. For the proposed benchtop experimental scaled degasser, a 1mL sample size removed 

intermittently from the starting solution raised concerns that the accuracy of the degas rate measurements would be 

negatively affected. FTIR was proposed as a potential measurement method that could use a smaller sample size to 

determine CO2 loading, as sample sizes could be reduced to the order of 100’s of µL. FTIR analyses to measure CO2 

loading on amines have also been performed in the past to reasonable success with monoethanolamine (MEA).3 

Another benefit of FTIR was that the CO2 loading measurement should not be affected by water loading since the 

wavenumber peaks for OH do not interfere with those of the carbonyl region. For the remainder of this paper, 

language pertaining to “percent loading” of CO2 shall refer to mass percent loading. For example, if a 1g solution of 

DGA has 7% CO2 loading, that means that it contains 0.07g CO2. 

II. Historical Background 

The usage of liquid amines to remove CO2 from an air stream has heritage in various Earth-based systems. This 

process, also known as amine gas treating or gas sweetening, utilizes aqueous solutions of amines to remove acid 

gases like hydrogen sulfide (H2S) as well as CO2 from hydrocarbon processing industrial plants.4,5 This prior history 

using amine-based CO2 scrubbing systems in industrial systems made this technology attractive to the US Navy for 

usage in a human-in-the-loop system during the advent and design of nuclear-powered submarines, which required 

an air-revitalization system capable of maintaining low CO2 partial pressures. As a result, all US Navy submarines 

were outfitted with monoethanolamine (MEA) scrubbers.6 A general system diagram is shown in Figure 1.  
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Figure 1. MEA CO2 scrubber schematic adapted from Carey, 19836 

 

JSC conducted a study evaluating the characteristics of various commercially available liquid amines including 

MEA, methyl diethanolamine (MDEA), DGA, and others. The conclusion of this study was a recommendation that 

DGA be used for future evaluation and system design for a liquid amine CO2 scrubber.1  

III. Methodology 

A. Baseline Sample Generation 

In order to create consistent samples from which to draw pre-loaded DGA for degassing kinetics 

experimentation, CO2 was loaded onto 200mL batches of DGA. Three different loading concentrations were 

achieved by varying the amount of time each batch was exposed to CO2. To load CO2 into these batches of DGA, a 

0.5 micron stainless steel sparger was used to disperse 600mL/min ultra-high purity grade CO2 (Matheson Gas). 

Three batches of DGA were loaded for 5, 10, and 15 minutes, respectively. This process was again repeated for a 

volumetric mix of 35% deionized water and 65% DGA. These six batches were then used as standards to 

characterize the FTIR analysis in relation to pH desorption and used as preloaded samples from which to perform 

the investigation of DGA degas kinetics. 

B. Degas Kinetics Experimentation 

To characterize the desorption kinetics of DGA, a test matrix was developed to address various system 

parameters. The parameters of interest reported in this study were: 

1. Degas temperature 

2. Liquid flowrate (contact time) 

3. Presence of sweep gas 

4. Water concentration 
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 In order to separate and individually observe the effects of changing each of these parameters, an experimental 

glass contactor, hereby referred to as a “V-tube,” was custom-built and procured through Adams & Chittenden 

Scientific Glass. This glass V-tube was constructed with a single V-channel encased by a glass tube with various 

ports for liquid and gas input and output as well as instrumentation (Figure 2). 

 
Figure 2. Glass V-tube constructed by Adams & Chittenden Scientific Glass 

 

 The experimental setup and process and instrumentation diagram has been provided in Figure 3. First, 10mL of 

preloaded DGA (prepared via the procedure in Baseline Sample Generation) is introduced to the DGA source and 

sampling flask. The peristaltic pump draws the liquid from the flask and pumps it through a 1/8” OD silicon hose 

into a preheat loop to bring the liquid up to the desired degas temperature and into the input port of the V-tube. The 

liquid then travels through the V-channel and is drawn back into the flask by the peristaltic pump. Since a single 

pump is used and the reactor is sealed, the input and output flowrates should be consistent. Samples are drawn from 

the initial preloaded DGA source and sampling flask and intermittently through the duration of the test. Heat is 

provided to the system via an infrared lamp (500W). 

 
Figure 3. V-tube experimental setup 

C. pH Desorption: 

The method of pH desorption was used to release the bonded CO2 from Diglycolamine solutions. In this 

procedure described by Rogers, 20174, approximately 96-98% of the adsorbed CO2 can be recovered from solution 



 

International Conference on Environmental Systems 
 

 

5 

in gaseous form. The pH desorption setup is depicted in Figure 4. Specifically, this procedure consisted of the 

following steps: 

1. Measure the mass of an empty flask with stir bar 

2. Introduce approximately 1mL of DGA solution to the flask and record new mass 

3. Dilute the solution in the flask with deionized water 

4. Seal flask and turn on stirrer (vigorous) 

5. Evacuate the inverted graduated cylinder volume of approximately 200mL air and record starting volume 

6. Inject acid with purge air through acid line and record total volume injected into system 

7. Allow 3 minutes for desorption to occur 

8. Record final volume from inverted flask 

 

Then, knowing the initial mass of the solution and the volumetric CO2 evolved from the reaction, one can then 

calculate the mass percent loading of CO2 in the initial solution. 

 
Figure 4. pH desorption setup1 

D. Fourier Transform Infrared Spectroscopy: 

The three batch solutions of DGA loaded with CO2 described in section A were used as standards to calculate 

CO2 loading. A 4-point calibration curve was prepared by determining CO2 percent loading of the standards via the 

pH desorption method described above. To calibrate the FTIR, samples from the standards were loaded into a 

demountable IR window liquid cell (Buck Scientific p/n 6500C) with 4mm thick ZnSe crystal windows and a 

0.015mm sample spacer. Samples were loaded using a luer lock gastight syringe and the entire apparatus was 

disassembled and washed with first pure water, then isopropanol in between each sample analysis. FTIR analysis 

was performed on a Mattson Galaxy 6020 FTIR using WinFIRST v2.10. Transmittance data was collected at 10kHz 

from wavenumbers 400 to 4000cm-1 with a resolution of 4. Data analysis was performed using Spectragryph V1.1.0. 

Baselines were normalized for samples and standards together as a batch by first using the “sample baseline” feature 

built into Spectragryph using the range of wavenumbers from 3800-4000cm-1, then the “normalize peak” function 

was used on peak 895cm-1 to set all 895cm-1 peaks to the same height. This peak was chosen because it was a peak 

from DGA that remained consistent in all samples. Peak area was obtained from wavenumbers 1205 to 1755cm-1 

which is the observed bound carbonyl region in DGA (Figure 5). A calibration curve was made using peak area vs 

percent CO2 loaded, and then percent CO2 was determined for each sample. It is worth noting that with this 

normalization method, standard samples did not need to be physically run with each test sample for the FTIR-

calculated CO2 loading level to be within 10% of the expected value from the pH desorption test as long as the 

standard data was processed and normalized with the test samples. 
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Figure 5. FTIR absorbance plot for DGA, lean and CO2 loaded 

IV. Experimental Data 

A. Preloading and FTIR calibration samples 

Following the methodology described above, three volumes of pure DGA were loaded with CO2 for 5, 10, and 

15 minutes respectively, and pH desorption was performed on each of the samples in triplicate. This process was 

again repeated for a volumetric mix of 35% deionized water and 65% pure DGA. pH desorption results are shown in 

Figure 6. Variance and deviation between samples can be attributed mainly to the resolution of the graduated 

cylinder, as previously described.1 It is an interesting coincidence that the CO2 loading levels in the 35% water 

diluted samples are comparable to the loading levels in the pure DGA samples. 
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Figure 6. pH desorption to calculate CO2 preloading on aqueous and non-aqueous DGA solutions 

 

To calibrate the FTIR readings, 500µL samples were analyzed by the FTIR methodology described in section 

IIID. Peak area in the wavenumber range from 1205 to 1755cm-1 was calculated for each sample and results are 

shown in Figure 7. These results show that the FTIR results could be used with relative success in determining CO2 

loading on the preloaded DGA samples.  

 
Figure 7. FTIR calibration against pH desorption 

B. Experimental Test Cases 

A baseline test case was established based on initial design parameters provided by JSC. For this test, the V-tube 

was set to run at a target degas temperature of 85°C with a flowrate of 0.4mL/min. The input solution was the 15-

minute preloaded pure DGA sample, and there was no sweep gas present during the test. Samples were taken at the 

initiation of the test, then at 1, 2, 3, and 4 hours into the test, and then again at 21 and 24 hours into the test. It was 

observed that the solution was slightly discolored at the end of the test. FTIR results from this test are shown in 
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Figure 8.  As discolored DGA has been a known characteristic result when the solution is heated in the presence of 

oxygen, FTIR analysis was performed on clear and various discolored samples and the wavenumber range 

pertaining to CO2 loading were not affected. Therefore, FTIR analysis to determine CO2 loading on discolored 

samples was still considered to be viable. 

 
Figure 8. Baseline V-tube run CO2 loading 

 

From these results, it was determined that the test would need to be extended well past 24 hours to see more CO2 

unloading from the solution. The same test parameters were attempted three more times, but each time failure 

occurred because the peristaltic pump could not consistently operate at 0.4mL/min for extended periods of time. The 

baseline test case was then revised to flow at a higher target flow rate of 0.8mL/min while keeping all other 

parameters the same. Under the new parameters, the baseline test was run for a total of 96 hours, with samples taken 

intermittently. It was observed that discoloration occurred gradually through the duration of the test, and evaporated 

DGA recondensed inside the V-tube above the liquid level in the V-channel (Figure 9). FTIR results for CO2 loading 

are added to the plot and shown in Figure 10. An exponential trendline has been imposed on the data and seems to 

fit reasonably (R2 > 0.99). 

 
Figure 9. End of V-tube run showing sever discoloration of the DGA as well as condensing DGA inside V-

tube 
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Figure 10. Baseline and Revised Baseline V-tube runs 

 

In the next test case, the V-tube was set to target a degas temperature of 105⁰C. The input solution was once 

again the 15-minute preloaded pure DGA sample flowing at 0.8mL/min without sweep gas present. Discoloration 

and evaporation occurred much more rapidly during this test, and as a result, the test was terminated at 24 hours. 

The discoloration observed at 24 hours runtime during this test was comparable to the discoloration observed in the 

baseline test at 96 hours runtime. Cumulative FTIR results from the baseline tests and the high temperature test are 

shown in Figure 11. The results suggest that the higher temperature causes the DGA to release CO2 at a higher rate, 

which is expected.  

 
Figure 11. High temperature V-tube run compared with baseline 
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At this point the team decided it would be prudent to run a repeat of the baseline test to gain confidence in the 

repeatability of results. Cumulative FTIR results are shown in Figure 12. It is observed that for the first four 

sampling points, the CO2 loading follows comparably with the initial baseline evaluation, however it deviates as the 

runtime increases. Very oddly, the CO2 loading appears to increase at the end of the test. At this point, the cause of 

this apparent increase in CO2 loading is unknown. A fault in the FTIR calibration was suspected, however 

verification samples were analyzed and returned positive results. 

 
Figure 12. Repeated Baseline run shows poor results 

 

In the next test case, N2 sweep gas (UHP, Matheson Gas), was plumbed into the headspace of the V-tube and set 

at a flowrate of 400mL/min. The target degas temperature was 85°C and the input DGA was the 15-minute 

preloaded sample at 0.8mL/min. The test was allowed to run for 72 hours and the cumulative FTIR results from the 

initial baseline, the high temperature run, and the sweep gas run are shown in Figure 13. It was noted that during the 

sweep gas run, discoloration was not observed, which was expected since oxidation is the suspected cause of amine 

discoloration. 
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Figure 13. V-tube run with N2 sweep gas at 400mL/min 

 

In the final test case, the 35% water/65% DGA mixed solution was used as the initial preloaded sample. As 

before, the 15-minute CO2 preload was used with the target degas temperature of 85°C, 0.8mL/min liquid flowrate, 

and no sweep gas. Cumulative FTIR results are shown in Figure 14. Total runtime was 75 hours and discoloration 

was observed. The results from this test show that an aqueous DGA solution will more readily release captured CO2, 

and the rate is comparable to using a sweep gas during regeneration.  

 
Figure 14. Aqueous DGA solution (35% water) V-tube run 
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V. Comparisons, Conclusions, and Future Work 

CO2 degassing characteristics were explored under varying parameters in this study. Using a benchtop-scale, 

custom-built V-tube, varied degassing system design parameters of temperature, flowrate, water dilution, and sweep 

gas were compared to a baseline set of parameters. In order to measure the CO2 content in a given DGA solution, 

Fourier Transform Infrared Spectroscopy was calibrated against a known method of pH desorption. Experimental 

samples of DGA solution were then analyzed using FTIR and CO2 loading levels were interpolated based on the 

calibration set. The usage of FTIR to analyze CO2 loading seemed to work reasonably well, however more extensive 

method testing would be necessary to fully verify results and improve repeatability. Given the time requirement and 

the limited sample size of the solution in these experiments, it was not feasible to verify each FTIR reading with a 

parallel pH desorption volumetric CO2 measurement. 

Of the test cases, using a starting solution of 35% water and 65% DGA is the most promising option because it 

showed similar degas rates to using a sweep N2 gas in a system with a starting solution of pure DGA. This is a 

promising result because using a sweep gas to increase the rate of CO2 reclamation would be impractical in a 

spaceflight system, as the whole purpose of a CO2 scrubber is gas separation.  

Moving forward with the design of a degassing system, the teams at JSC and ARC are fully characterizing the 

aqueous 35% water/65% DGA solution in terms of uptake and regeneration. Currently, work is underway at ARC to 

characterize single pass regeneration data at elevated temperatures (115°C) as well as to investigate the effect of 

adding custom synthesized carbonic anhydrase to the solution on CO2 capture and release rates.  

Acknowledgments 

The authors would like to thank Tanya Rogers and Giraldo Alvarez for their insights and inputs throughout the 

experimental testing. 

References 
1Rogers, Tanya, et al., “Selection and Characterization of a Liquid Sorbent for CO2 Removal in Advanced Exploration 

Systems”. 47th International Conference on Environmental Systems, 2017. ICES-2017-123 
2Rogers, T., Graf, J., and Worrell, J., “Liquid Behavior through a Capillary Microchannel Contactor in a Reduced Gravity 

Aircraft”. 47th International Conference on Environmental Systems, 2017. ICES-2017-122 
3Einbu, Aslak, et al. "Online analysis of amine concentration and CO2 loading in MEA solutions by ATR-FTIR 

spectroscopy." Energy Procedia 23 (2012): 55-63. 
4Kohl, Arthur L., and Richard Nielsen. Gas purification. Gulf Professional Publishing, 1997. 
5Rochelle, Gary T. "Amine scrubbing for CO2 capture." Science 325.5948 (2009): 1652-1654. 
6Carey, R., A. Gomezplata, and A. Sarich. "An overview into submarine CO2 scrubber development." Ocean Engineering 

10.4 (1983): 227-233. 

 

 

 

 

 

 

 

 

 

 

 

 


