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Presentation Notes
Blue=the science & the missions as a function of freq
Each mission’s goal in a nutshell: obtain imagery at certain microwave bands.
The most challenging imaging techniques involve interferometry & polarimetry.
The more complex the technology, the more critical  the risk reduction.
The standard for comparison is & always will be the real-aperture imager (best understood, best calibrated).
Polarimetry can piggy-back on a real-aperture imager (leveraging).  IPO wants to have polarimetry on CMIS in 2009.
How to test products of current & future ATIPs:?  How to advance to TRL 6? Answer: leverage AESMIR.
In particular:
	Current ATIP-funded projects are targeting pieces of ‘digital radiometry’
		Jeff Piepmeier-high speed A/D converters
		Caleb Principe, Jeff P.-digital correlators
		Ed Kim-correlation radiometer calibration subsystem
	Current IIP-funded projects that will/can leverage AESMIR:
		GPM-AESMIR to provide airborne capability for the non-interferometer bands & validation of the STAR band
		Joel Johnson-AESMIR can provide a real-world testbed for RFI rejection
By supporting AESMIR, ESTO can leverage the contributions of many others: GSFC, EOS, IPO, HQ/Land Surface Hydrology Program, HQ/Polar Programs, HQ/Suborbital




Satellite

ATMS 23-183 GHz
SMAP 1.4 GHz
SMOQOS 1.4 GHz
AMSR2 6-89 GHz



Outline

ATMS background
Pre-launch (TVAC) testing
Post-launch (commissioning) activities

Conclusions & future activities
15t light image



ATMS timeline

Earliest spaceborne microwave sounders
e Mariner 2 — Venus
e Cosmos 243/384 -- sounding + imaging (USSR)

e 1972/75 - NEMS/SCAMS sounders on Nimbus 5/6 conceived here on
MIT campus (Staelin/Rosenkranz), earliest US Earth sounders

e ..(skipping several generations of sounders)...

e 1990s— ATMS conceived as replacement for AMSU-A/B, MHS
15t ATMS

e 2011 October-- 15t ATMS launched on S-NPP (still operating)
2ND ATMS

e 2017 February — pre-launch calibration (instrument TVAC)

e 2017 April-May — JPSS-1 satellite TVAC

e 2017 Nov 18 —JPSS-1/NOAA-20 Satellite Launch

e 2017 Nov-2018 Feb — post-launch commissioning

e 2018 March 7 — NOAA-20 Handover from NASA to NOAA




ATMS at a glance

22 channel microwave sounder
Frequencies range from 23-183 GHz

Total-power, two-point external
calibration

Continuous cross-track scanning, with
torque & momentum compensation

Orbits: 824 km; sun-synch 1330 LTAN

Thermal control by spacecraft cold
plate

Contractor: Northrop Grumman

New US operational sounder series Northrop Grumman

Sounders provide highest-impact
observations for NWP models



Scene Temperature

330K
305 K
280 K
255 K
230 K
205 K
180 K
155K
130 K
110K
84 K

Pre-Launch Cal

e Performed at 3 instrument physical temperatures
e Spans range of possible on-orbit conditions

e 6 5scene TBs each

e Measured in thermal vacuum chamber

e Primarily to measure non-linearity before launch
 Repeatability is also checked pre-launch

330K 330K 330K

84K




Commissioning Activities

Post-launch first 90 days (Nov 2017-Feb 2018)
e Sensitivity (NEDT)

 Noise power spectrum

e Antenna pattern/sidelobe characterization
e Scan angle bias (flat field) determination

e Reflector emissivity determination
e Ka-band RFI check

e Cold cal position selection

* Lunar intrusion mitigation

* Dynamic range

e Pointing/geolocation




ATMS Sensitivity (NEDT)

Comparison of J1 Pre-Launch, NOAA-20 on-orbit, SNPP on-orbit
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Non-Linearity

Cannot measure on-
orbit, so must measure
pre-launch in TVAC

13 channels show larger
worst-case nonlinearity
than S-NPP

4 channels are about the
same, 5 channels show
smaller nonlinearity

There is a nonlinearity
correction in the ATMS
TDR algorithm, so this
does not affect
performance of the SDRs
directly

But NWP models use
TDRs, so residual NL is
important

Non-linearity Factor [kelvin]
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Noise Power (K2

NOAA-20 TVAC versus On-Orbit Noise Power Spectra
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Noise Power Spectra and Gain Stability (AG/G)

Is a measure of the excess over white noise (the “1/f” noise) that dominates the low

frequency noise, and makes the “along-track” (scan to scan) NEDT larger than the “along-

scan” (short term) NEDT

— Finite AG/G leads to the “striping” (small scan-to-scan offsets) seen in global brightness temperature

images

— The mechanism is the long time period (relative to the single obs integration time) between cold

space (ICT) observations (1 scan period, i.e. 8/3 seconds)

— And that up to 8 scans of cold space and ICT observations are averaged before using them to

calibrate the scene measurements

This is the AG/G that goes into the NEDT equation
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AG/G (Dimensionless)
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ATMS Inter-Channel Correlation

Comparison of J1 Pre-Launch, NOAA-20 on-orbit, SNPP on-orbit

1 . .
S-NPP on-orbit N-20 on-orbit N-20 pre-launch
22 22
08 20 F 20
18 18
16 16
06
c 14 c 14
1] m
S 12 S 12
04 - E 10 E 10
R & <,
| 6 6
0.2
4 4
2 2
0 1 4 7 10 13 16 19 22 1 4 7 10 13 16 19 22 1 4 7 10 13 16 19 22
ATMS chan. ATMS chan. ATMS chan.

V. Leslie & [.Osaretin, MIT LL

N-20 Noise Correlation Much Better than S-NPP for all Channels




NOAA-20 Maneuvers

Rolls -65deg & +30deg

Antenna pattern/sidelobe
check

Backflip Maneuver

Antenna pattern/sidelobe
check

Sidelobe contamination
characterized

Scan Bias (flat field)
determined

Reflector Emissivity much
better than SNPP

Minor lunar intrusion; no
significant impact

Maneuver results good

-65 Roll
20
- limb
0 cold space

+30 Roll
Hawalli
2IIZI 4LIII EIIII WD 12|I] 1":0 1IéIII
i NOAA STAR
Backflip
Channel-m Channel-16

cold moon i

space




NOAA-20 ATMS Antenna Reflector Emissivity
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NOAA-20 ATMS Ka-band RFI Test
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e NEW on N-20 satellite: Ka-band transmitters
e (Qualitative check: No obvious sign of RFl from Ka transmitters so far
e Quantitative check to follow



ATMS Conclusions

e NOAA-20 ATMS working well since activation

® NOAA-20 ATMS post-launch performance is comparable to pre-launch
performance

® ATMS commissioning successful
e NOAA-20 ATMS compares well to S-NPP ATMS
® NEATSs stable since activation and slightly better than S-NPP
® I[nter-channel noise correlation much lower than S-NPP
® No Ka-band transmitter RFl so far
® Characterizations nominal, and in some cases much better than S-NPP

®JPSS-2 ATMS is under construction
eS| traceable absolute TB calibration being explored (D.Houtz poster)
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Ground-based

* Looking up (atmosphere)
— SMIR

 Looking down (soil moisture)
— TMRS2
— LRAD



Up-looking MW sounder

SMIR = Scanning Microwave Radiometer
50, 90, 183 GHz

Very similar to Radiometrics ‘mailbox’
radiometer

Ground-based, aimed up
Mechanical tilting

Ambient & LN2 external calibration
First deployed ~1999, still in use



Ground-based SSM/I simulator
‘“TMRS2’

*Mw radiometer
19, 37, 85 GHz
*H & V polarized
eAmbient & cold
calibration on-site
*Remote control
1 year in Alaska
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: 'am _B¥
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MICROWAVE INSTRUMENTS

Truck-mounted Radar

two frequencies (1.6 and 4.75 GHz)
four polarizations (HH, VV, HV, VH)
three nadir angles (15, 35, 55 deg)
120-deg azimuthal sweep

-- 12-m boom height

weekly measurements

Tower-mounted Radiometer (Lrad)

| -- single frequency (1.4 GHz)

-- two polarizations (H, V)

-- five nadir angles (25, 35, 45, 55, 60 deg)
-- three azimuthal positions

-- ~17-m tower height

S5 - continuous measurements




NASA/GSFC Lrad L-band Tower Radiometer

e Ground-based, 1.4 GHz, H & V-pol

e Rugged, suitable for long time series
unattended observations

e Transportable 18 meter tower, easy set-up
e Automatic azimuth & elevation scanning
e 1.2m antenna (10-15 deg beamwidth)

e High-accuracy: hot/cold calibration w/each
observation

e Remote control/data link
e Matched receivers
— suitable for polarimetry

— suitable for digital radiometry studies
e 7.5kW diesel generator or external AC power

5/23/03 NASA/GSFC/Microwave Sensors & Hydrological Sciences Branches Contact: Ed.Kim@nasa.gov +1-301-614-5653



Alrborne

NAST-M

SLAP

AESMIR

Alrcraft considered



NAST-M airborne mw sounder

NAST-

3.5 — 16 micron @ 0.25 cm-1

NAST-M
(54, 118 GHz"

Built by colleagues at MIT



Scanning L-band Active Passive (SLAP):
Goddard’s airborne simulator for SMAP



SLAP vs. SMAP

SMAP = Soil Moisture Active Similarities

Passive .
NASA soil moisture satellite .
Primary sensor = L-band .
radiometer

Additional sensor = SAR for
improving resolution, but
radar died after 2 months

SLAP = airborne version

Passive + active microwave
Same frequencies (L-band)
Same polarizations

Same conical scan

Same Earth incidence angle

Same radiometer RFI
capability

Same basic radiometer &
radar products

12/5/2014 Kim et al, SED seminar 31



L Motor
(non-rotating,
inside)

| N Instrument

o @ S .
| - (rotating,
outside)

3/28/2018



SLAP overall configuration

maximize re-use, simulate SMAP

Spinning assembly Non-Spinning
Operator
interface
Radiometer A k.
w/SMAP front end Ircra
SLAP/AESMIR Nav &
controller Attitude
- sensor
Aquarius || SMAP Digital troll
Antenna q controller
diplexers Back end AESMIR
AESMIR
L1  motor
LTS controller
radar
Power
supplies

New build - From Aquarius From SMAP COTS

3/28/2018 Kim et al, microRad at MIT

33



SLAP on NASA Langley King Air

Bottom view of SLAP on NASA
Langley King Air (UC-12) aircraft.

Side view

Typical aircraft operations: 190 KIAS, 4.5 hrs endurance.
1 pilot, 1 SLAP operator.

12/5/2014 Kim et al, SED seminar 34



Top view of conical scan

Conical Scan rate: nominally 15 RPM, depends on
altitude & airspeed for imaging without gaps

Earth Incidence Angle 40 deg up from nadir

Footprint size depends on altitude
- Radar Min altitude 1500ft(457m): 200m dia.*
- Radiometer Min alt 500ft(152m): 65m dia.*
- Max altitude** 11000 ft(3353m): 1445m dia.
- * geometric mean
- ** 25000 ft if pressurized

Full 360 deg scan yields
* 2 looks (fore & aft) of the surface
« 2 swath images (fore half-scan & aft half-scan)
« different fore vs. aft readings depending on target
nature

12/5/2014 Kim et al, SED seminar 35



Dec 2013 Flights
High Resolution (260m) Example

Location: Maryland
Eastern shore, same
flight lines as
SMAPVEX'08, modified
by ATC near Dover AFB

2 flightsin 1 day (1
flight shown)

15t flight: low altitude
(2000 ft AGL), high
resolution (260m)

~80km long lines
1.4km wide swaths

SLAP can go 4x finer Dover AFB runway
(65m resolution), but 4km x 50m
swath also narrows to
350m.

12/5/2014 Kim et al, SED seminar 36



2" flight on Dec 18, 2013—"High” Altitude
2 SMAP 36x36 km grid boxes mapped in <3hrs
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12/5/2014 Kim et al, SED seminar




May 2014 iPHEX Campaign

2 flights per day (~8 hrs total) 4. Water cal @ Lake Jordan

1. Aircraft takeoff/landing at NASA 5. Refuel at Raleigh-Durham
Langley 6. Water cal @ Lake Jordan
Fly to primary science target area 7. Overfly secondary science targets
Mow the lawn at target area during return flight to Langley

12/5/2014 Kim et al, SED seminar

38



May 21, 2014 SLAP radiometer images

Mow-the-lawn section ~ 100 x 20 km, ~centered on Boone, NC
Forested area, E-W mountain ridge divides lines, steep slope to south

280

H pol

Fore half scan
280 SW facing lines

285

1275

1270

I 265

V pol
260 Fore half scan
SW facing lines

255

250

Resolution varies 200m -1km depending on terrain elevation; 2hrs elapsed time.
Isolated red spots are point RFI (color scale tops out at 290K)

12/5/2014 Kim et al, SED seminar 39



May 2014 SLAP
radiometer & radar for same location

e Resolution varies
200m -1km
depending on elevation
* NE-facing
* Fore half scans
* Mow-the-lawn section
e ~2 hrs elapsed time
 Upper 2 flight lines
north of ridge line
e Lower 2 flight lines
on steep slope
e Whole domain is
largely forested

Radar HH pol

12/5/2014 Kim et al, SED seminar 40



- Channels for snow, ice, precip, soil moisture,
vegetation, ocean winds, SST, convection,
temperature/humidity sounding

All AMSR-E bands (6, 10, 18, 23, 37, 89 GHz) in a
single scanning package + channels simulating
other satellite radiometers

Maximizes space for other instruments, science
synergy, & field campaign cost effectiveness

"".,Flown on P-3 & C-130; compatible with other




Field campaigns

e SNOWEX
e SnowEX video



Primary SnowEx site:
Grand Mesa (GM)

King Air & Twin Otter base:

SnowEx Year 1 Sites & Aircraft Bases
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Primary site: Grand Mesa, CO

 Areas of

main ground truth

esa was an ideal site for the forest objectives of

2/26/18 NASA HQ




Added to provide a well-defined basin

with a gauged outlet for water/energy
balance studies

Site #2 provided a well-defined basin to address

Much smaller—only 3x5 km

Same core ground truth as GM site

10 people; Weeks 1 & 3 only

Airborne obs: 4 aircraft, 7 sensors

GBRS: TLS lidar, FMCW radar, VIS/IR,
Timelapse cameras, spectrometers,
GPR, GPS, accelerometers, solar

2 energy balance met stations

Complex topography was a ‘bonus/,
not required to meet year 1 objectives

energy-balance/water budget questions

2/26/18 NASA HQ
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CORE SENSORS

. SnowSAR: X & Ku-band radar (ESA)
. CAR: BRDF & multispectral imager (GSFC)

. Thermal IR/video suite
. Imager (GSFC)
. High-accuracy non-imaging (KT.15, from U.Washington)

. Video camera (GSFC)

. ASO suite (JPL)

. Lidar
. Hyperspectral imager
EXPERIMENTAL ALGORITHMS

e UAVSAR: L-band InSAR (JPL)
e GLISTIN-A: Ka-band InSAR (JPL)

Prototype sensor

. WISM: active & passive microwave (Harris Corp IIP)

2/26/18 NASA HQ

Aircraft
(flight days)

—— I ——7”._

Twin Otter (3)‘
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SnowSAR (X/Ku SAR)

Core sensor: dual frequency SAR
(X & Ku bands)

Developed by ESA for CoReH20 %8
effort; Operated by MetaSensing &%

Multiple campaigns on different
aircraft between 2011-2014

First time installation on a P-3
Best data set on 215t Feb mmm)
Processing/calibration ongoing

Pros: volume scattering retrieval, §

sensitive to SWE & melt, high res, & A
topography OK, sees through '
clouds, no sun needed

Questions: accuracy, saturation,
wet snow, forest, vegetation, soil

Ku-band

2/26/18 NASA HQ 47



CAR/BRDF Grand Mesa

CAR = Cloud Absorption Radiometer (GSFC)
Multispectral imager & Bi-Directional Reflectance (BRDF) sensor

Example image Example BRDF

2/26/18

22:53:00 UTC
Feb 16, 2017 SZA=73.70 870nm

BRDF data help decipher forest canopy effects on surface energy balance
and blockage of sensing techniques by trees.

NASA HQ

19



e Thermal IR Sensor Suite (IRSS)

consists of two instruments
and a camera

— QWIP infrared imager (GSFC)

— KT-15 infrared thermometer
(U. Washington)

— HD visual video camera

* |RSS Instruments were cross-
calibrated with ground team
field IR targets before
deployment

e IRSS Instruments calibrated
with handheld target
before/after each flight

2/26/18

Thermal IR Sensor Suite

20170221
13:30047
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14.
13.
12,
11.
10,

©

SN W m oW

=

—1.
-2
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“C

Example QWIP thermal IR image showing
trees ~same temperature as snow in clearings
[significant snow is intercepted by trees].
Shadow areas are much colder.

These data are critical for energy balance
modeling studies.
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Lidar

e Core sensor for SnowEx Year 1

* Fills spatial gaps in ground truth ASO

e Airborne Snow Observatory (JPL) Senator Beck Feb 8, 2017

e COTS sensor; mature installation : B '

* Pros: high res, topography OK,
wet snow OK, good forest
penetration, wide swath

(airborne), no sun needed,
altimetry portion TRL 9

e Questions: requires density to
get SWE (not TRL 9), snow depth
resolution only ok for deep snow,
clouds, swath width for
spaceborne

2/26/18 NASA HQ 21



 Experimental technique

e Measures snow depth via
INSAR altimetry

e Single-pass INSAR

e Pros: less cloud impact vs lidar,
wet snow ok, topography OK

* (Questions: penetration into
snow, depth resolution,
requires density to get SWE,
accuracy, forest, vegetation,
atmospheric correction, revisit _
timer, swath width, SWOT? " Depth change Feb 20-21 i

3a0s |- o Py

3805 -

Longhude
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Experimental technique

Measures SWE via phase
change

repeat-pass INSAR

Pros: little/no cloud impact;
directly senses SWE,
topography OK, sunlight
not required

Questions: accuracy, SWE
range & precision, forest,
vegetation, swath width,
coherence & repeat
interval, wet snow

2/26/18

NASA HQ

UAVSAR (L-band InSAR)

INSAR results for Feb 6 — 22
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| Snow depth — transects
manual probes & MagnaProbes
Snow pits

depth

density

water equivalent

stratigraphy
grain fype
grain size

snow temperature
surface roughness
— SHow wetness

e

4 :; Snow penetrometer
~= Spectral reflectance

Snow casts

Soil bulk density

Veg biomass

Veg structure photos
Precip (solid + liquid)
(not a complete list)

soil temperature
soil moisture
Meteorology g
5 stations - Grand Mesq
2 stations — Senator Be

[ Bty ¢ i

’ 4‘,..-.
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Ground Truth

165
l§ Transects

~ 16,500 depth
measurements

Unusually deep snow by Feb
And very warm = wet

Snowpack
internal
layers

3 weeks 154 snow pits
40-50 people/wk ~4500 density
~100 people total ~ measurements
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_ Typical
g snow pit

Community
Training
trench

Community building
was a major component
of Year 1

2/26/18
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Ground Based
Remote Sensing
(GBRS)

Key part of Year 1 experiment design
e Similar sensors as on aircraft
e Other complementary sensors

e more bands, different geometry, time series
e Enhanced ground truth

* Opportunities to test prototypes



°
= Ground-base remote sensors on...

i Lodig .y
’ - - ;
3 L X y
3 ® &
| e

A boom truck
(U.Michigan)

Canadian
sround-based radar
(U.Waterloo)

Sled towed
by
snowmobile
(U. de
Sherbrooke)

TIMELAPSECAM 25 FEB 2000 10:43 am
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Scans in September and February

//JL;— 1.53m™ . 1.08m
. 472m " e
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High Res snow depth for ground truth and to answer process questions
High Res geometry data to understand how remote sensing works in forests




The offer:

folks who could
commit a week of
time were welcome
to participate.

The response:
40-50 people

x 3 weeks; total
100 participants
(13 international)

w - USDA  GESTAR
o @esemssmenesy O (80 % Dartmouth £, 5 . S PV UCAR BB (Y i o (A
“ASH/]N(JT h .......... g -
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SnowEx Summary

Snow has enormous scientific and societal impacts

These are reflected in multiple Designated and Explorer topics in the Earth Science
Decadal Survey

The multi-sensor + model approach needed for snow requires careful mission concept
trade studies

The SnowEx campaigns are how THP will collect data for those trade studies

SnowEx Year 1 began this using forests to challenge multiple sensing techniques

— 5aircraft flew 9 sensors, plus 100 participants collected ground truth and >35 GBRS activities
collected data at 2 sites in Colorado in February 2017

— Aunique legacy dataset was collected; NSIDC is the archive
— Extensive press coverage & public outreach

Future years of SnowEx will target science & mission concept gaps
A snow mission tradespace framework is under construction and will use SnowEx data

Several upcoming snow-related missions & proposals have synergies to explore: ABoVE,
GPM, IceSat2, GEDI, ESA EE10

NASA should develop a wider swath lidar



Snow Resources

snow.nasa.gov

NASA Terrestrial Hydrology Program Manager
— Dr. Jared Entin, Jared.K.Entin@nasa.gov

SnowEx year 1 organizing team contacts
— Dr. Edward Kim, ed.kim@nasa.gov

— Dr. Charles Gatebe, charles.k.gatebe@nasa.gov

THP Snow Program Office Lead
— Dr. Dorothy Hall, dorothy.k.hall@nasa.gov

Int’l Snow Remote Sensing Working Group (ISWGR)
— http://nasasnowremotesensing.gi.alaska.edu/

2/26/18 NASA HQ
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Conclusions

Presented some examples of microwave radiometers
deployed on

— The ground
— Aircraft
— Satellites

Microwave radiometers are powerful observational
tools for atmosphere, land, ocean, and cryosphere

If operated carefully, they can provide useful and
unigue observations

Contact info: ed.kim@nasa.gov
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