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ABSTRACT 

For many applications, accurate and fast image registration 
of large amounts of multi-source data is the first necessary 
step before subsequent processing and integration. Image 
registration is defined by several steps and each step can be 
approached by various methods which all present diverse 
advantages and drawbacks depending on the type of data, 
the type of applications, the a priori information known 
about the data and the type of accuracy that is required. This 
paper will first present a general overview of remote sensing 
image registration and then will go over a few specific 
methods and their applications.  
 

Index Terms— Image registration, remote sensing, 
feature matching, alignment 
 

1. INTRODUCTION 

Earth science studies deal with issues such as climate 
change over multiple time scales, predicting crop 
production, monitoring land resources and understanding 
the impact of human activity on major Earth ecosystems. 
These issues are addressed by using global and repetitive 
measurements provided by a wide variety of satellite remote 
sensing systems. All these systems support multiple-time or 
simultaneous observations of the same Earth features by 
different sensors. Remote sensing systems provide global 
measurements that are not available using ground or even 
airborne sensors, and these measurements are often 
complemented by local or regional measurements. To reach 
the full benefit of such complementary measurements, all 
these datasets must be correlated and integrated; and the 
first step in this correlation and integration is image 
registration. The difficulty in registering these various data 
is that they usually have varying resolutions – spatial, 
spectral, radiometric, temporal and angular, they are 
acquired under different conditions – e.g., atmospheric, 
seasons, time of day, cloud coverage, and they cover 
features with various characteristics, e.g., natural features 
such as mountains or coastlines, or manmade features such 
as cities, bridges and roads. In addition to these various 
characteristics of the data, the application for which the data 
needs to be registered and the information known about the 
data adds a level of complexity to the registration process. 
When dealing with other types of registration such as 
medical registration, an image model is usually available 

and fiducial points can be used; for remote sensing image 
registration, it is much more difficult to have well-
distributed ground control points in each scene that needs to 
be registered. It is even more difficult when dealing with 
other planets than the Earth. Finally, the size of the datasets 
often represents an additional challenge to the image 
registration problem. Therefore, many different methods for 
image registration have been developed that can deal with 
the multiple image characteristics and the multiple 
conditions and applications that need to be dealt with when 
performing remote sensing image registration [1]. This 
paper will present a general overview of remote sensing 
image registration, review some general registration 
frameworks, and will then describe a few representative 
algorithms.   
 

2. WHAT IS IMAGE REGISTRATION 

In the Earth remote sensing domain, the datasets are usually 
first processed using a navigation or model-based systematic 
correction; the model is based on characteristics related to 
orbit, attitude, platform/sensor, Earth model, etc. Image 
registration is then often called feature-based precision 
correction; it starts from the results of the systematic 
correction and is based on selected features extracted from 
the image data. 
As a general definition, image registration is the process of 
aligning two or more images, or one or more images with 
another data source, e.g., a map containing vector data. 
Image registration can be described within a mathematical 
framework in which I1(x,y) and I2(x,y) are two images or 
one image and a map that need to be registered. The 
registration challenge is to find the mapping (f,g) which 
transforms I1 into I2 such that:  
 I2(x,y) = g(I1( fx(x,y ), fy(x,y) )) + n(x,y), (1) 
in which f represents a spatial mapping, g is a radiometric 
mapping, and n is the noise term. Examples of spatial 
transformations can be a translation, a rigid or affine 
transformation, or even a projective, perspective of 
polynomial transformation. Examples of radiometric 
transformations are nearest neighbors, bilinear or cubic 
convolution transforms. 
Another framework that describes image registration is the 
algorithmic framework first introduced by Brown [2], which 
includes the 4 main elements: 

1. The Search Space of potential transformations, f 



2. The Feature Space of information extracted from 
the 2 datasets 

3. The Similarity Metric used to match the 2 sets of 
features 

4. The Search Strategy that finds the optimal 
transformation. 

To these 4 steps, we need to add the following ones: 
5. The Resampling Method used to create the 

corrected image, if needed 
6. The Validation Method by which the image 

registration algorithm is evaluated as accurate and 
reliable. 

Many image registration surveys can be found in the 
literature, some general and some more focused on a 
specific domain such as remote sensing or medical imagery 
[1–5]. These surveys describe the many algorithms that have 
been designed in which various choices have been made and 
combined for elements 1 through 4/5. As described in [1], 
image registration algorithms are often broadly categorized 
as area-based or feature-based. Area-based methods match 
areas or regions without an explicit correspondence between 
points in the two images, while feature-based methods use a 
first step to extract “information-rich” features that are used 
for matching. But these 2 approaches are often combined in 
actual algorithms. So another way to group image 
registration considers the following categories: 

• Manual Registration 
• Correlation-Related Methods 
• Fourier-Domain and Other Transform-Based 

Methods 
• Mutual Information and Distribution-Based 

Approaches 
• Feature-Point Methods 
• Contour- and Region-Based Approaches. 

In the remaining of this paper, we will focus on the 3 main 
components that are essential to design all these algorithms, 
namely: feature extraction, similarity metrics and matching 
strategies. Then, we will briefly describe a few 
representative algorithms and their applications to NASA 
data. 
 

3. FEATURE EXTRACTION 

Features can be either gray levels, either original or after 
enhancement; salient points such as those defined by an 
edge detector, a Fourier, Fourier-like, wavelet or wavelet-
like transform, or a corner or interest point detector; or 
contours, lines, shapes or regions. 
When features are chosen as gray levels, the values can be 
the original values of the images or they can be the values 
obtained after an enhancement operator such as an edge 
extractor, i.e., edge magnitudes, or a wavelet transformation, 
i.e., low-pass or high-pass subband magnitudes. In this case, 
the transformations f and g from Equation (1) are either 
found globally (e.g., using a Fast Fourier Transform [12] or 

a Fourier-Mellin Transform [13]) or can be found by 
combining local measurements using a similarity measure 
such as cross-correlation. 
When using salient points, they can be matched either by 
finding point-to-point correspondences and then by 
computing the overall transformation from these point-to-
point matchings; or by directly finding the transformation 
that provides the optimal matching between the two clouds 
of salient points. Apart from a general edge detector (e.g., 
Sobel, or Canny), other methods can be utilized. The first 
class of methods is linked to harmonic analysis, starting 
with short-time Fourier transforms, e.g., a Gabor transform, 
for which the window is a Gaussian function; more recently, 
discrete directional Gabor frames have also been proposed 
[6]. Wavelets, shearlets and wavelet-like representations 
such as the Simoncelli decomposition can also be utilized 
[7,8]; these representations allow to locally separate the pass 
and high-pass components of the signal and the highest 
values of these components can be used as salient points: 
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Salient points can also be obtained using an interest or a 
corner operator such as the Harris operator [9]. 
Other features, that take into account a larger amount of 
spatial information correspond to contours, lines or general 
shapes, can be extracted by methods such as line fitting, a 
simple or generalized Hough transform, or various region 
segmentation methods [1/Chapter 10]. Another approach, 
that was used for detecting animals such as flamingos, 
manmade features such as buildings and roads as well as 
natural features such as trees and planetary craters, uses a 
Marked Point Process (MPP) model [21]. An MPP is a 
framework in which probabilistic models are defined on 
configuration spaces consisting of an unknown number of 
parametric objects. A configuration consists of a set of 
marked points. Random parameters (called marks) 
are associated with each point. This framework allows to 
model geometric constraints about each or a group of 
objects. Each realization of an MPP represents a model for 
the possible spatial distribution of several objects in an 
image. Contours, shapes and objects are usually matched 
one-to-one and the transformation, f, is computed from these 
individual matchings. 
Finally, methods like the Scale-Invariant Feature Transform 
(SIFT) and its variant, the Speeded Up Robust Features 
(SURF) method, detect and describe local features in 
images. The extracted features are invariant to uniform 
scaling, orientation and illumination changes; this allows for 
a direct matching of SIFT points between 2 images [10,11]. 
 

4. SIMILARITY METRICS 

When matching any of the features described in Section 3, 
one wants to choose a similarity metrics that is the most 
appropriate to the algorithms and to the type of extracted 
features. These metrics include distances that will need to be 



minimized and correlation-like measures that will need to be 
maximized. Some examples are: 
• The Sum of Squared Distances (SSD), an L2 norm, over 

the region overlapping the 2 images: 
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• The usual Cross-correlation: 
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and the corresponding Normalized Cross-Correlation 
(NCC): 
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• The Mutual Information (MI) measure, which maximizes 
the degree of statistical dependence between the images: 
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    and which also can be computed using histograms: 
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where M is the sum of all histogram entries, i.e., number 
of pixels (in overlapping subimages). 

• Another similarity metrics that has been utilized in some 
algorithms is the Hausdorff or the partial Hausdorff 
distance defined by: 
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    where 1≤K≤|I1|. 
• Finally, another less common metrics is the Discrete 

Gaussian Mismatch (DGM) where ws(a) denotes the 
weight of point a, and which is normalized between 0 and 
1: 
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5. STRATEGIES FOR IMAGE MATCHING 

Matching strategies are paired with the feature extraction 
and the similarity metrics to provide various registration 
algorithms, but as described in Section 3, not all matching 
strategies can be used for all feature extraction methods. 
The most obvious matching strategy is the exhaustive 
search, i.e., looking at all potential transformations between 
the 2 datasets and select the transformation that yields the 
optimum similarity. Of course, this approach becomes 
exponential with the dimensionality of the transformation 
space and can rarely be applied in practice.  
When dealing with gray level values, and when looking only 
for translations, the Fast Fourier Transform has been applied 

with great success by computing a phase correlation. The 
correlation can be computed efficiently in the Fourier 
domain by computing the inverse of the Fourier product: 
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This can also be extended to NCC, and finding small 
rotational and scale differences can be obtained by matching 
small moving chips [12]. If larger rotations and scales are 
involved, the images can first be transformed into the 
Fourier-Mellin domain which is translation-invariant, and 
represents rotation and scale change as translations in the 
angular and radius coordinates [13]. 
Still, the most popular strategy for matching features seems 
to be optimization. It can be applied to gray levels as well as 
to individual features, globally on the large images or 
locally on sub-images. There are various types of 
optimization techniques, the simplest being the steepest 
gradient descent; others are based on the Levenberg-
Marquart algorithm [7,14] or on a stochastic gradient [15]. 
This last method, although computationally more expensive, 
avoids to actually compute the gradient and instead provides 
an estimate; this can be of interest with more complicated 
similarity metrics such as the mutual information. 
Another strategy involves Robust Feature Matching (RFM) 
using an efficient subdivision and pruning of the 
transformation space and has been described in [16]. 
When dealing with contours and shapes, other approaches 
are being considered; for example, local geometric 
distributions described in [1], and genetic algorithms used to 
register binary shapes [17]. 
More recently, neural networks have also been considered to 
perform image registration [18]. Although counter-intuitive 
for a well-defined problem such as registration, the mapping 
of the image registration problem to a neural network 
framework is adapted to the rise of new types of hardware 
such as quantum and cognitive computing [19]. Although it 
has not yet reached its full potential, it offers great promise 
for registering large amounts of data very quickly. 
At the same time, matching strategies also involve looking 
at the image either globally or performing local independent 
registrations over small sub-images that are then either 
stitched at the edges between multiple tiles of the image or 
recombined to compute a global transformation. Other 
approaches look at multi-resolution approaches, such as 
wavelets or shearlets, with or without decimation, looking at 
a coarser transformation space in the first iterations, and 
progressively refining the accuracy of the transformation 
while reducing the search space in the later iterations. 
Similar approaches can be taken by using other types of 
image representations such as quadtrees [20].  
 

6. A FEW IMAGE REGISTRATION ALGORITHMS 

In this section, a few algorithms combining previously 
described feature extraction methods, similarity metrics and 



matching strategies, are presented as illustrations of the 
previous sections. 
 
6.1. Wavelet and Wavelet-Like Based Algorithms 

Our team developed several algorithms based on wavelet or 
wavelet-like features, using several similarity metrics such 
as L2 Norm and mutual information, and with a multi-
resolution optimization matching strategy following the 
structure of the wavelet decomposition. Results, presented 
in refs [1,7,8], show the strengths and weaknesses of various 
features depending on the initial conditions of the 
optimization process; some features will provide a higher 
registration accuracy when starting close to the solution, 
while some other features will provide a better robustness 
when the optimization starts further from the solution. 
Results presented in [8] also show that for very textured 
images, regular features (even SIFT) do not yield high 
registration accuracy while features taking rotation into 
account (such as shearlets) can quickly provide an 
approximate solution. Mutual information, although 
computationally more expensive, provides a sharper peak 
and therefore a better accuracy for the final solution.   
 
6.2. Marked Point Process Based Algorithms 

More recently, we performed work using MPP models for 
crater detection and we used these extracted craters as the 
features to perform planetary data registration. Hausdorff 
distance and Mutual Information were used as similarity 
metrics; both a multi-resolution approach and a region-
based approach were used as search strategies, and a genetic 
algorithm provided the feature matching. Results are 
presented in [22] and [23]. 
 

7. CONCLUSION 

This paper presented a brief introduction to remote sensing 
image registration and its main components, namely feature 
extraction, similarity metrics and matching strategies. These 
components need to be adapted to the variety of data to 
register, the many data acquisition methods and conditions 
as well as the many applications registration is needed for. 
Current and future work will involve a systematic 
assessment of these various components that will help future 
users choose the most appropriate image registration 
algorithm for their data and its applications.  
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