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OTIS Test Overview
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 Optical Telescope Element and 
Integrated Science Instrument 
Module assembled into OTIS in 2016

 Cryogenic vacuum testing performed 
in 2017 at Johnson Space Center to:
– Verify alignability and wavefront

performance of the OTE 
– Perform end-to-end testing of the OTE 

and science instruments
– Verify thermal hardware workmanship
– Gather thermal balance test data for 

model comparisons
 Nine story chamber with 1100 m2, 

multi-panel GHe shroud
 30-day cool down to test temperature
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Infrared Instrument Testing 
Requirements
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 Stray light from warm sources can 
saturate instruments and interfere 
with optical testing of science 
instruments

 A conservative maximum allowable 
temperature requirement of 70 K 
was levied on all surfaces with a 
view to the optical path

 All penetrations in the GHe shroud 
and all test equipment entering it 
required thermal management
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Thermal Control Overview
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 Thermal Control Objectives:
– Eliminate direct viewfactors from the chamber wall into the GHe 

shroud.
– Minimize direct viewfactors from the LN2 shroud into the GHe shroud.
– Minimize reflective (non-black or specular) surface finishes in view of 

the optical path.
– Achieve < 70 K on all surfaces within view of the optical path.

 Thermal Control Methods:
– Shroud penetration closeouts

• Stationary and movable
– Thermal anchoring of electrical cables entering the shroud
– Thermal control systems for test equipment operating inside the 

shroud
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 To understand how much energy 
is blocked by the closeout, 
consider the ratio:

 Using low emissivity on the 
warm side of the closeout 
results in a ratio of 10% 
reradiated, or a 90% reduction 
in heat flux into the shroud.

 Many penetration closeouts were 
designed as simple SLI covers

 SLI temperature can be calculated 
as a function of its emissivities and 
the two environments it separates:

 Knowing this temperature, the heat 
flux reradiated into the test cavity 
is:

 Without the closeout, heat flux into 
the test cavity is*:

Reradiation of SLI Covers
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TSLI = 50.8 K

Twarm = 90 K
𝜀𝜀1 = 0.1

TGHe = 20 K
𝜀𝜀2 = 0.9
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* Assumes Warm surface 
emissivity = SLI 𝜀𝜀2 emissivity
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Stationary Penetration 
Closeouts
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 The majority of shroud penetrations were cutouts 
required for access or metrology during integration 
of test hardware.

 Many had metallic, purpose-built covers for 
mechanically sealing the openings after integration.

 Additional effort to ensure light tightness could be 
required, especially if:
– Covers could not be securely fastened to shroud
– Covers were multi-part components with seams 

that might open due to cryoshift.
– Test hardware fed through the penetration 

without completely sealing it.
 Single layer polyimide or polyester was typically 

used to ensure a light-tight cover in these instances.
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Movable Penetration Closeouts
Down Rods Example
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 Top-mounted, hanging configuration of the OTIS test resulted in critical 
load-bearing hardware penetrating the shroud ceilings.

 Dynamic quiescence required that closeouts minimize shorts.
 A two-part system was used in this example:

– Baffle mounted to rod and sized to prevent touching shroud was used 
to remove direct energy paths into test cavity

– Flexible outer layer created light-tight seams
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Movable Penetration Closeouts
PG Boom Example
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 Complicating factors of this closeout job:
– Large shroud cutout – approximately 0.25 m2

– 355 degree rotation requirement of the PG Boom
– Had to survive at least 5 cryo-cycles

 Multi-part Baffle Solution:
– Wire-stiffened SLI closeout attached to shroud 

necks down energy through-path.
– Aluminum cake pan baffle attached to GHe-

cooled PG Boom and overlapping SLI closeout 
eliminates direct viewfactors from LN2 and 
chamber wall to SLI gap.

– Aluminum internal baffle attached to GHe-cooled 
PG Boom completely blocks direct energy from 
cutout area and redirects energy back to shroud 
wall
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Thermal Anchoring of Cables
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 Test telemetry and 
thermal control 
systems required 
dozens of cable 
bundles enter the 
optical test cavity.
– 164 GSE Heaters
– 964 GSE Sensors

 Thermal 
management was 
required to ensure 
cables entered the 
20 K environment 
below the 70 K limit.
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Cable Anchoring Test Results
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 Inside the GHe Shroud, trunkline
cables met pigtails and extra 
lengths of both were coiled on the 
floor providing further cooling.

 Temperature sensors on the cables 
a the penetration box and 
connector stands show that at 
cryostability:
– Cables entered the GHe Shroud 

just below 50 K.
– Additional cooling inside the 

GHe Shroud resulted in cable 
temperatures under 35 K at the 
test article.
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Test Equipment Thermal 
Management
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 Room temperature and pressure metrology systems were required inside 
the optical test environment.

 The most complicated of this was a set of four camera and flash 
Photogrammetry units suspended in the test cavity

 An active thermal management system was required to both manage the 
temperature and pressure sensitive hardware and maintain a cold 
exterior. It was designed with:
– A blanketed pressure 

tight enclosure purged 
with dry nitrogen

– A windowed thermal 
shield actively cooled 
with helium

– Active cooling of the 
boom and other external 
components
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CPM Test Results
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 All actively-cooled components 
achieved temperatures below 
52 K at cryostability.

 The dual-window system with 
IR coatings was effective.
– No heat signatures detected 

by radiometers, 
calorimeters, or optical test 
images.

 Operation of the units did 
result in additional heat 
generation, but the GHe flow 
was adequate to remove it.
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Lessons Learned
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 Five commissioning and Pathfinder development tests provided 
opportunity to experiment with closeout materials and configurations 
and verify with test data. Observations of note are:
– Over numerous cryo-cycles, pinholes can form in thin sheet materials, 

especially where motion from cryoshift or pressure changes occur.
– Rigorous closeout designs with flexible features are more likely to 

survive multiple cryo-cycles at locations with moving parts
– Light-tight seams can be achieved using polyimide tapes with acrylic 

adhesives, but CTE mismatch can cause tape lifting.
• Aluminum foil tape with acrylic adhesive can be a good way to 

make tape seams to solid surfaces more robust.
– Developing a rigorous thermal instrumentation plan is critical in large 

cryogenic vacuum tests.
• Secondary instruments looking for environment heat/light leaks
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Summary
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 The JWST OTIS test, the largest cryogenic-vacuum optical test 
to date, was successfully completed in 2017.

 Stray light and thermal control of test boundaries provided 
an 1100 m2 environment that was dark and cold enough to 
successful test the flight infrared instruments by:
– Meticulously managing every gap, cutout, and penetration 

in the shroud.
– Rigorously designing test equipment that had to be inside 

the shroud, including cables.
– Providing extensive thermal telemetry and control systems 

and precisely controlling them during the test.
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