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The James Webb Space Telescope
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Upon launch, the James Webb Space Telescope (JWST) will become the world’s most 
powerful general-purpose space observatory

– Scientific successor to the Hubble Space Telescope

– Optimized to observe in near-to-mid infrared wavelengths (0.6 – 28 μm)

21 m length x 14 m width (~Tennis Court)

~10 m (3-story 
building)
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Major System-Level Assemblies 
of JWST

48th International Conference on Environmental Systems 
July 2018, Albuquerque, NM 3

Optical Telescope 
Element (OTE)

Integrated Science 
Instrument 

Module (ISIM)

Sunshield

OTE + ISIM 
= “OTIS”

Spacecraft Bus

+V1

+V2

+V3

Image source: www.jwst.nasa.gov



JWST OTIS Payload Major 
Components
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Primary Mirror Segment Assemblies 
(PMSAs) (18 total)

Primary Mirror Backplane Support 
Structure (PMBSS)

Integrated Science Instrument Module (ISIM), which 
contains the NIRSpec, NIRCam, FGS, and MIRI Instruments

ISIM Electronics Compartment (IEC)
(ROOM TEMPERATURE)

Deployable Tower Assembly (DTA)

Secondary Mirror Assembly (SMA)

Aft Optics Subsystem (AOS): 
Contains Tertiary Mirror (TM) 

and Fine Steering Mirror (FSM)

Secondary Mirror Support Structure 
(SMSS)

+V2

+V3

+V1

Thermal Management System (TMS)

Secondary Mirror 
(SM)
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OTIS CV Thermal Test Objectives

1. To preserve hardware integrity upon transition to cryogenic 
thermal balance (cryo-balance) conditions and transition back 
to ambient temperatures by respecting all imposed limits and 
constraints (L&Cs, 92 total)

2. To achieve the simulated on-orbit payload temperature levels 
and stability for optical, mechanical, and instrument tests

3. To predict and measure thermal balance test data for model 
crosscheck, both on ISIM and OTE components

4. To achieve a workmanship thermal conductance assessment 
of the flight instrument heat straps which for the first time 
would be connecting all the payload flight instruments and 
radiators

5. To achieve test timeline optimization by executing the OTIS CV 
cooldown and warmup in a time-efficient manner
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OTIS CV Test Configuration

48th International Conference on Environmental Systems 
July 2018, Albuquerque, NM 6



OTIS CV Test Thermal Control 
Hardware
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Photo of OTIS CV Test Configuration 
inside NASA JSC Chamber A
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Image source: www.jwst.nasa.gov



Pre-Test Predictions 
(shown at ICES 2017 Conference)
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Cooldown (33 Days) Cryo-Stable (20.9 days)Pre-Cryo
Warm Vac
(6.5 days)

Thermal
Balance

(5.2 Days)

Warmup (23 Days) Post-Cryo
Warm Vac
(3.8 days)

9

Contamination 
avoidance hold 
for ISIM 

MIRI cryocooler
turn-on

ISIM heater step-
down through water 
contamination band

MIRI cryocooler
“pinch point”

ISIM pre-cool 
strap “zero-Q”

Start of Alignment 
Drift Test

Latch and Hinge 
Deployment 

Tests

Start of water 
contamination band

End of water 
contamination band

End of molecular 
contamination band

Start of molecular 
contamination band

Helium shroud 
reaches 20K at 

day 16



As-Tested Full OTIS CV Profile
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Pre-Cryo
Warm Vac

(8 days)

Post-Cryo
Warm Vac

(4 days)

Cooldown (32 Days) Cryo-Stable 
(32 Days)

Warmup (19 days)Thermal 
Balance 
(4 days)

Hurricane 
Harvey

Cooling from 
scavenger plates 

at ambient 
temperatures Unexpected maximum 

temperature achieved on 
PMBSS structure at LRM 

interface

Nitrogen “burp” off CPPs

Shorter thermal balance 
duration: quicker 

stability to thermal 
balance requirements 

than pre-test predictions

Faster warmup than expected 
due to schedule conservatism 

in pre-test model



OTIS CV Pre-Test Model Predictions vs. 
Test Measurements: ISIM Cooldown
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Note: Dashed Lines are Predictions, Solid Lines are Measurements



OTIS CV Pre-Test Model Predictions vs. Test 
Measurements: OTE Cooldown
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Note: Dashed Lines are Predictions, Solid Lines are Measurements



Vast majority of 
temperatures were within 
3K of predictions

OTIS CV Pre-Test Model Predictions vs. 
Test Measurements: Thermal Balance

48th International Conference on Environmental Systems 
July 2018, Albuquerque, NM 13

PMSA mechanisms 
predicting colder in 

OTIS model than test

Discrepancy 
at BSF/IEC 

LRM 
Interface 

DTA and IEC predict 
warmer than test due to 
configuration differences 

in model / some 
incorrect model 

assumptions
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OTIS CV Pre-Test Model Predictions vs. 
Test Measurements: ISIM Warmup

Note: Dashed Lines are Predictions, Solid Lines are Measurements



OTIS CV Pre-Test Model Predictions vs. 
Test Measurements: OTE Warmup
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Note: Dashed Lines are Predictions, Solid Lines are Measurements



Discussion of Discrepancies between 
Model and Test: Cooldown

At Thermal Balance: 
• IEC and DTA region predicted warmer in model than test

• Blanket high ε* assumption resulted in more heat escaping from IEC warm 
electronics components via MLI: background sink temperature of modeled 
test environment was warmer than observed

• Conservatively high copper conductance through harnesses caused more 
heat to flow into the IEC than assumed

• For faster runtimes in transient analysis, only two discrete emissivity sets 
(room temperature and cryogenic) were used, with an abrupt transition 
between emissivity sets when PMBSS average reaches 90K

• However,  temperature-dependent emissivity is a large driver of model 
accuracy in the transition regime between 60K and 170K

• Generally, assumption of room temperature emissivities when PMBSS Avg > 
90K cause model predictions to cool more rapidly than test, while 
assumption of cryogenic emissivities after PMBSS Avg < 90K cause 
predictions to transition slower than test (shown in plot on next page)
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In-Depth Look at Emissivity 
Effects on OTIS CV Predictions 
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Discussion of Discrepancies between Model 
and Test: Thermal Balance and Warmup

At Thermal Balance: 
• Max PMBSS temperatures diverged from as-predicted results due to LRM 

interface between BSF and IEC
• Since IEC was 270K and BSF at interface was 80-90K, even small differences 

in conductance/material properties between model and actual hardware 
were enough to cause large temperature differences between model 
predictions and test measurements

• The resultant model discrepancy was attributed to errors in assumed 
conductances across LRM joints and conservatively high composite 
conductance in BSF

On Warmup:
• Payload response was faster on hardware than in model predictions

• Original pre-test analysis stacked worst-case conditions for schedule 
conservatism, and placed large margins on performance with respect to 
structural and contamination constraints to ensure hardware safety

• In test, it was observed that components could maintain faster rate without 
violating constraints: overall warmup rate was accelerated 
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Conclusions and Recommendations 
from OTIS CV Modeling
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• The extensive thermal modeling effort ensured that schedule was met and the 
payload was kept safe during the 100-day OTIS CV test

• The model gave OTIS thermal engineers insight into payload behavior during 
transitions between ambient and cryogenic temperatures and understanding as 
to the driving L&Cs for each phase of test 

• Most of the discrepancies between model and test were due to conservative 
modeling assumptions and simplifications in the interest of runtime and test 
schedule

• From this effort, the following recommendations are made improving future 
system-level accuracy of test cryogenic thermal models:

• For large-scale cryogenic systems, a modeling and analysis plan which trades 
analysis speed and geometric fidelity against accuracy should be developed 

• Use of more temperature-dependent emissivity sets between 60K and 170K 
greatly increases prediction accuracy this transition regime

• Conservatism built into payload models consistently results in longer predicted 
transition times than observed

• For interfaces with large gradients or temperature change vs. time, a greater 
number of test sensors is critical to understanding physical phenomena in case 
trends observed do not match pre-test predictions 
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