

Integration Concept for a Hybrid-Electric Solid-Oxide Fuel Cell Power System into the X-57 "Maxwell"

Kurt Papathakis, Otto Shnarr Thomas Lavelle Nicholas Borer Tina Stoia, Shailesh Atreya

- NASA Armstrong Flight Research Center
- NASA Glenn Research Center
- NASA Langley Research Center
- Boeing, Huntington Beach

June 26th, 2018

Large projected market–McKinsey analysis of demand by 2030 in 15 major U.S. cities:

- 500 Million annual UAS package deliveries
- 750 Million annual passenger trips

NASA Aeronautics

NASA Aeronautics Vision for Aviation in the 21st Century

ARMD continues
to evolve and
execute the
Aeronautics Strategy
https://www.nasa.gov/
aeroresearch/strategy

Transition to Alternative Propulsion and Energy

In-Time System-Wide Safety Assurance

Assured Autonomy for Aviation Transformation

U.S. leadership for a new era of flight

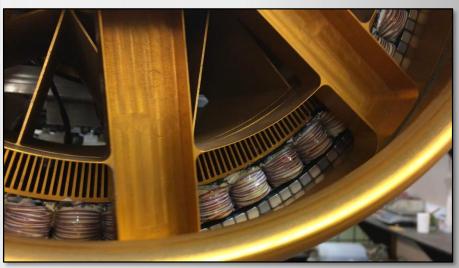
X-57 "Maxwell"

Motor and Propeller Endurance Test on Airvolt

JSC Test Unit With Interstitial Barrier and Heat Spreader (Design Template)

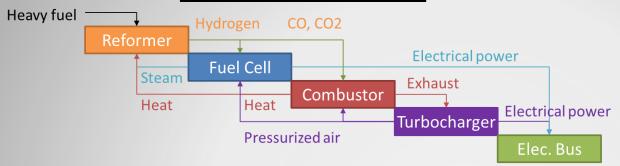
X-57 Battery Module (¼ Pack) before Short Circuit Test

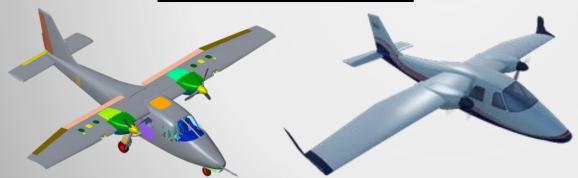
ATO 2.201/213


X-57 Thermal Runaway Unit (2 Trays; ½ Module)

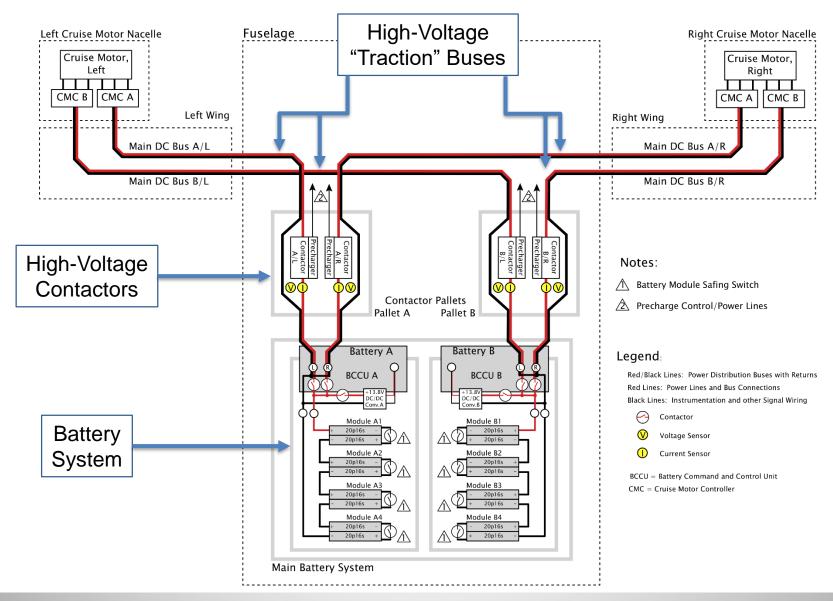
One Battery Pack (4 Module, ½ Ship Set)

Cruise Motor Inverter Environmental Testing at NASA

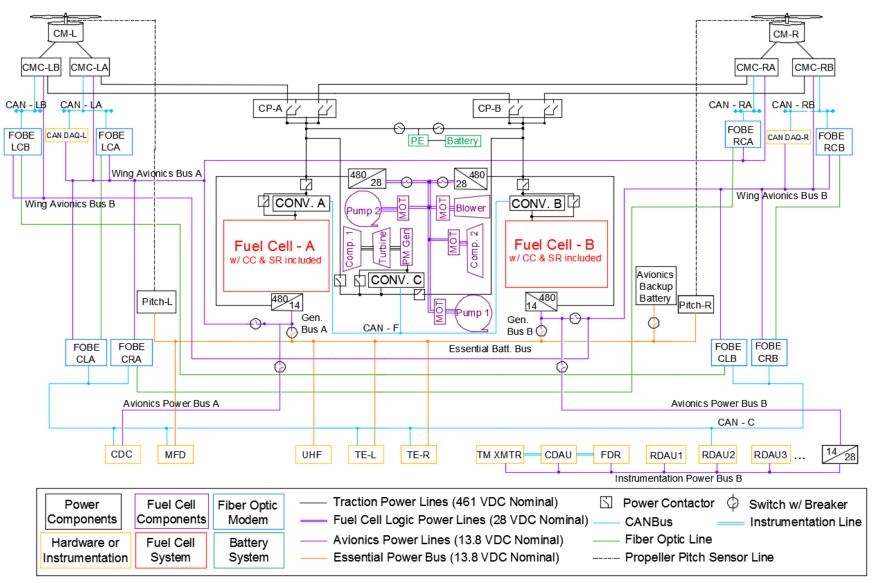

Prototype Cruise Motor


Fuel Cell Variant of X-57 "Maxwell" – X-57-F "FUELEAP"

Fuel Cell Architecture


X-57 "Maxwell" MOD II

- Steam reformer provides ability to utilize heavy fuels instead of carrying H₂ onboard
- Goal is to provide 60% overall efficiency with 3+ hr range
- Baseline aircraft is the X-57 "Maxwell" MOD II, an allelectric airplane


X-57 "Maxwell" Power Architecture

X-57-F "FUELEAP" Power Architecture

Power Requirements and Technology Gaps

Each Fuel Cell produces approximately 60 kW

Mission segment	Motor power	Power demand	Battery power*
Takeoff (2 min)	144 kW	158 kW	38 kW
Cruise Climb (10 min)	120 kW	131 kW	11 kW
Cruise (fuel dependent)	100 kW	110 kW	-10 kW

^{*}When the battery system is discharging, the value is (+); when charging, the value is (-).

Option	Efficiency	Weight	Notes				
Reference system: Hot recycle blower	-	-	Represents a material and reliability challenge				
Option 1: Warm recycle blower	-6%	+50 lbm	 Add two heat exchangers, plumbing and an air scoop (drag) Frontal area of ram air heat exchanger is 0.7 ft² 				
Option 2: Carry water	-12%	+94 lbm*	 Volume and mass for water tank Mass for more stacks (25% more stacks) Additional heat exchanger required to produce steam No recirculation is necessary 				

FUELEAP Failure Modes and Effects Analysis

Failure Scenario (FUELEAP-specific))	SOFC (x2)	Turbine	Compressor (primary)	Compressor (backup)	Pump (primary)	Pump (backup)	Recycle Blower	Converter A	Converter B	Converter C	CAN-F	Battery System	Criticality
Nominal														
Single Fuel Cell									-1					Mission
Dual Fuel Cell		F			D		D	_	-	-1				Safety
Turbine Failure			F	-		D					-			Mission
Primary Compessor			D	F										Mission
Secondary Compress	or	D			F									Mission
Primary Pump						F								Negligible
Secondary Pump							F							Negligible
Recycle Blower		D						F						Mission
Converter A		_							F					Mission
Converter B		_								F				Mission
Converter C			D								F			Mission
CANBus - F									-1	-1	-1	F		Negligible
Battery System													F	Mission
		Nominal Operations D Degraded Perform						rfor	man	ce	I Inoperable			
LEGEND F		Failed Component						Safety Land as				d as	soon as possible	
	M	lission Land as soon as prac						ctical Negligible				ble	Assess during flight	

- Only FUELEAP-specific failures addressed
- System designed to be fault tolerant
- Even with Dual Fuel
 Cell Failure ("Safety
 Critical"), the system
 will have enough power
 from the turbine and
 the battery system for
 steady-level flight

Backup Slides

