

# AERODYNAMIC ANALYSES IN SUPPORT OF THE SPANWISE ADAPTIVE WING PROJECT

Mark S. Smith NASA Armstrong Flight Research Center

Christopher Sandwich N. R. Alley *Area-I, Inc.* 

AIAA Aviation 2018, June 25-29 Atlanta, GA

# NASA

# Outline

- PTERA-SAW design efforts
- PTERA-SAW flight test parameter estimation work
- Feasibility studies for potential supersonic testing



# **PTERA-SAW Design Approach**

- During the preliminary design of PTERA-SAW, Area-I explored the effects of the wing tip control surfaces on PTERA's stability and control, particularly with respect to pitch trim and yaw
- Approach:
  - Adapt baseline PTERA aircraft:
    - Minimize subsystem redesign (e.g. propulsion system, landing gear, etc.)
    - Aft stabilizers remain the same
    - Keep main span constant
  - Vary wing sweep, to increase the wing tip's yaw moment arm; allow wing area to change with sweep
  - Vary wing tip span, to increase control surface size
  - Move center of gravity slightly aft to offset aerodynamic center movement caused by sweep, to regain elevator trim authority



### **PTERA-SAW Layout**

- 1) Wing tip span  $(b_{wl})$
- 2) Inner wing span  $(b_{in})$
- 3) Main wing span  $(b_{main})$
- 4) Flaps
- 5) Inboard ailerons
- 6) Outboard ailerons
- 7) Elevator
- 8) Rudder
- 9) Wing dihedral ( $\Gamma$ )
- 10) Cant angle ( $\Gamma_{wl}$ )
- 11) Sweep angle ( $\Lambda$ )
- 12) Center of gravity (c. g.)





# **Design Analysis Toolset**

- Area-I's WingsX
  - Lift, drag, moments
  - Elevator-trimmed drag polar
  - Aerodynamic derivatives
  - Static and dynamic stability and control
  - Development of aircraft control laws
  - Flow field analysis
  - Prediction of interactions between multiple aircraft
- Accuracy validated through numerous flight test programs, including PTERA baseline configuration (which was documented in AIAA 2014-2577)





# **Design Trade Space**

Flight condition: 90 KIAS at 10,000 ft MSL

Gross weight: 200 lbs

Constants: Main wing span and dihedral, wing chord, inboard control surfaces Variables: Wing tip span, sweep, and cant angles

| Configuration | Sweep<br>Angle (⁄/) | Wing tip<br>Span, in<br>( <i>b<sub>wl</sub></i> ) | C.G. shift, in<br>(aft of root<br>¼-chord) | Wing tip Yaw Control<br>(% of rudder @ 10.0°<br>deflection) |                |              |                 |
|---------------|---------------------|---------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|----------------|--------------|-----------------|
|               |                     |                                                   |                                            | <b>75.0</b> °                                               | <b>-75.0</b> ° | <b>0.0</b> ° | _               |
| 1             | 0°                  | 12                                                | 1.0                                        | 10                                                          | 9              | 6            |                 |
| 2             | 0°                  | 15                                                | 1.0                                        | 12                                                          | 11             | 9            | Baseline Values |
| 3             | 0°                  | 18                                                | 1.0                                        | 14                                                          | 13             | 12           |                 |
| 4             | 10°                 | 12                                                | 3.0                                        | 20                                                          | 12             | 11           |                 |
| 5             | 10°                 | 15                                                | 3.0                                        | 26                                                          | 16             | 13           |                 |
| 6             | 10°                 | 18                                                | 3.0                                        | 32                                                          | 21             | 16           |                 |
| 7             | 20°                 | 12                                                | 5.4                                        | 30                                                          | 15             | 13           | Design Cross    |
| 8             | <b>20</b> °         | 15                                                | 5.4                                        | 39                                                          | 22             | 17           | Explored        |
| 9             | 20°                 | 18                                                | 5.4                                        | 48                                                          | 29             | 20           | Explored        |
| 10            | 30°                 | 12                                                | 8.0                                        | 38                                                          | 17             | 16           |                 |
| 11            | 30°                 | 15                                                | 8.0                                        | 51                                                          | 27             | 20           |                 |
| 12            | 30°                 | 18                                                | 8.0                                        | 64                                                          | 38             | 24           |                 |



#### **Design Study Results, Configuration 2**







|                        | Pitch Trim   | Stability Deriv                | Cont            | Aileron<br>Yaw   |                  |                     |                                |
|------------------------|--------------|--------------------------------|-----------------|------------------|------------------|---------------------|--------------------------------|
| Wing tip<br>Cant Angle | $\delta_{e}$ | <i>C</i> <sub><i>m</i>,α</sub> | C <sub>n,</sub> | $C_{m,\delta_e}$ | $C_{n,\delta r}$ | C <sub>n, dao</sub> | Power<br>Relative<br>to Rudder |
| 0°                     | 5.09° TEU    | -1.744<br>(S.M. = 25.6%)       | 0.0757          | -1.645           | -0.0591          | -0.0011             | 2%                             |
| <b>75</b> °            | 5.71° TEU    | -1.687<br>(S.M. = 31.6%)       | 0.0502          | -1.646           | -0.0580          | 0.0037              | -6%                            |
| -75°                   | 5.77° TEU    | -1.684<br>(S.M. = 31.8%)       | 0.0903          | -1.647           | -0.0581          | -0.0101             | 17%                            |

All derivatives are per radian



#### **Design Study Results, Configuration 8**







|                        | Pitch Trim   | Stability Deriv                | Cont            | Aileron<br>Yaw   |                  |                     |                                |
|------------------------|--------------|--------------------------------|-----------------|------------------|------------------|---------------------|--------------------------------|
| Wing tip<br>Cant Angle | $\delta_{e}$ | <i>C</i> <sub><i>m</i>,α</sub> | С <sub>п,</sub> | $C_{m,\delta_e}$ | $C_{n,\delta r}$ | C <sub>n, dao</sub> | Power<br>Relative<br>to Rudder |
| 0°                     | 5.12° TEU    | -1.564<br>(S.M. = 25.8%)       | 0.0569          | -1.521           | -0.0552          | 0.0055              | -10%                           |
| 75°                    | 4.17° TEU    | -1.064<br>(S.M. = 20.5%)       | 0.0607          | -1.520           | -0.0543          | 0.0212              | -39%                           |
| -75°                   | 4.48° TEU    | -1.122<br>(S.M. = 21.2%)       | 0.0896          | -1.520           | -0.0545          | -0.0156             | 29%                            |

Configuration chosen for PTERA-SAW All derivatives are per radian



# **Aerodynamic Modeling**

- After choosing the configuration for PTERA-SAW, Area-I generated an aerodynamic model using *WingsX* data
- Additional aerodynamic predictions were generated at AFRC before and after the flights
  - Prior to the flights, Athena Vortex Lattice (AVL) was used to create an aerodynamic model overlay for simulating asymmetric wing tip deflections
  - Additional VSPAERO (using its vortex lattice method) and AVL work was performed after the flights



#### PTERA-SAW Flight Test: Parameter Estimation Maneuver Design

- Orthogonal multisines
  - All axes simultaneously (6 independent surfaces)
  - 13 sec
  - Frequency range of 0.15 to 3 Hz
  - Sized in an attempt to produce similar response levels from all surfaces, based on predicted aerodynamics
  - Additional scale factors based on airspeed





# Flight Data Analysis

- Available maneuvers:
  - A total of 11 multisines were performed
  - No multisines were done for baseline configuration, but some windows of data were usable for identifying some derivatives
- Several parameter estimation techniques were used: output error in time domain and equation error in both time and frequency domains
- Parameter estimation results shown in subsequent plots are from output error and frequency domain equation error techniques, with 2-sigma error bars based on estimated standard errors



#### Example of Output-Error Response Matching (Wings Down)





#### Example of Output-Error Response Matching (Wings Up)





### **Example of Equation-Error Matching (Wings Down)**





### **Example of Equation-Error Matching (Wings Up)**





# **Yawing Moment due to Sideslip**



- Recall that no maneuvers were done with nondeflected wing tips
  - Deflecting the wing tips down appears to slightly improve directional stability
  - Effects of deflecting the wing tips upward are harder to discern due to scatter



# **Rolling Moment due to Sideslip**



- As predicted, deflecting the wing tips downward reduced the amount of roll due to sideslip
- Deflecting the wing tips upward increased the amount of roll due to sideslip, contributing to poor flying qualities



#### Rolling Moment due to Outboard Ailerons



- Outboard aileron roll power was less than predicted, regardless of wing deflection direction
  - Outboard ailerons are not used by the control system, so no data were available for nondeflected wing conditions



#### Yawing Moment due to Outboard Ailerons



- Outboard aileron yaw power was less than predicted before the flights, regardless of wing deflection direction
- Post-flight AVL matched wings-up cases
- Post-flight
  VSPAERO
  matched wings down cases



#### Outboard Aileron Yaw Power Relative to Rudder



- Rudder was slightly less effective than predicted
- Outboard aileron yaw power was close to preflight predictions for wings-down cases and lower than preflight predictions for wings-up cases



### Additional Comments About Parameter Estimation Results

- Output error and frequency domain equation error techniques agreed well with each other
  - Both techniques showed little scatter for wings-down cases
  - Both techniques had more scatter for wings-up cases; the outputerror results had a lot more scatter, possibly due to the poor flying qualities of the wings-up PTERA-SAW configuration
- Deflecting the wing tips caused a slight reduction in roll damping, regardless of deflection direction
- Deflecting the wing tips did not cause appreciable changes to yaw damping
- Longitudinal parameters did not change much with wing tip deflection



# Analysis for Potential Supersonic Follow-On Project (SAW 2.0)

- F-18
  - Quick study into effects of deflecting outer wing panels in flight (lift, stability, aileron control power)
- Subscale vehicle
  - A feasibility study is in progress at AFRC for aircraft configurations picked specifically for SAW
  - No results to present at this time



# SAW 2.0 F-18 Analysis

- Predictions were made of the aerodynamic effects of deflecting the outer wing panels on an F-18
- Analysis was performed using CFD (Cart3D), with additional data from vortex lattice codes at low speeds





#### **Predicted F-18 Lift vs. Mach**



- Results shown are for an angle of attack of 2 deg
- CFD predicts a slight increase in lift coefficient at high Mach numbers



#### **Predicted F-18 Yaw due to Sideslip**



- CFD and vortex lattice predict substantial increases in static directional stability with negative wing tip deflections
- Given the nature of the tools used, the effects could be over-predicted



#### **Predicted F-18 Aileron Yaw Power Relative to Rudders**



Tools predict that the ailerons would not produce a large percentage of the yaw produced by the F-18's rudders

•

 Shown is the total for the left and right ailerons



#### Predicted F-18 Aileron Roll Power Relative to Baseline



- Tools predict substantial losses in aileron roll power relative to the baseline aileron control power
- Shown is the total for the left and right ailerons



# **Concluding Remarks**

- PTERA-SAW configuration was chosen from an aerodynamic trade study that utilized Area-I in-house tools
- PTERA-SAW flight test parameter estimation results were good
  - Multisine maneuvers worked well
  - Trends were similar to predictions
  - Outboard ailerons produced less yaw than was predicted
- Aerodynamic analyses for a supersonic follow-on project are ongoing





#### **QUESTIONS?**

