NASA ACC High Energy Dynamic Impact Methodology and Outcomes

Kenneth J. Hunziker¹, Jenna K. Pang¹, Matthew E. Melis², J. Michael Pereira², and Mostafa Rassaian³

> ¹Boeing Research & Technology, Tukwila, WA ²NASA Glenn Research Center, Cleveland, OH ³Boeing Research & Technology, Tukwila, WA

> > 2018 AIAA SciTech Forum 8–12 January 2018, Kissimmee, FL

The material is based upon work supported by NASA under Award No. NNL09AA00A.

Outline

- > NASA ACC High Energy Dynamic Impact Overview
- Ballistic Impact Testing
 - Test Set-up
 - Test Results

Test Analysis Comparison

- LS-DYNA MAT162
- LS-DYNA MAT261
- Smoothed Particle Galerkin (SPG)
- EMU Peridynamics

Team

NASA ACC Technical Challenge Areas

1) Predictive Capabilities

Robust analysis for smarter testingBetter prelim design, fewer redesigns

2) Rapid Inspection

- Increase inspection throughput
- Quantitative characterization of defects
- Automated inspection

3) Manufacturing Process Simulation

- Reduce manufacture development time
- Improve quality control
- Fiber placement and cure process models

Verification & Validation

- Tie Technical Challenge work together
- Validate program benefits

NASA ACC High Energy Dynamic Impact Overview

The NASA ACC High Energy Dynamic Impact (HEDI) activity aims to reduce the number of analysis and testing iterations by developing analytical models that accurately predict

- Physical response
- Damage
- Failure modes

for large scale composite structures

HEDI Technical Approach

Overview of NASA ACC HEDI Testing

Phase I Technical Development

Phase I Accomplishments

- Assessed and developed Progressive Damage Analysis (PDA) models
 - Conducted coupon-level characterization testing
 - Updated stiffness, damage, and strength parameters
- Conducted extensive ballistic impact testing
- Evaluated model performance in predicting damage and panel behavior
 - Promising results
 - Improved upon past performance
 - Areas of improvement to target in Phase II

Capabilities and limitations of PDA models and significant test data for high energy dynamic impact

Detailed Phase I Accomplishments

- Four (4) analysis approaches: LS-Dyna MAT162, MAT261, and SPG; EMU Peridynamics
- Forty-two (42) ballistic impact tests on sub-element panels
 - Two (2) material systems with tape & fabric
 - Five (5) unique laminate configurations
 - Two (2) projectiles

Collaboration with GE, P&W, and Sandia NL

Damage state prediction from Peridynamics

Ballistic Impact Testing Overview

Forty-two (42) ballistic impact tests on flat panels

- Two (2) material systems
 - IM7/8552 UD tape & PW fabric
- Five (5) unique laminate types
- Two (2) projectiles

2" x 2" x 0.25" Titanium Plate Flexane® 94 – 3" diameter

Ballistic Impact Testing Overview

- Single stage gas gun
- 3" inner diameter
- 23' length
- 1900 in³ pressure vessel volume

Ballistic Impact Testing

Blunt Projectile

Progressive Damage Analysis (PDA)

Progressive Damage Analysis (PDA)

Blunt Projectile – Typical Response

Test-Analysis Comparison

Summary

Phase I

- Material models developed
 - Characterization coupon testing complete
 - Promising results from MAT162, MAT261, and peridynamics
- Ballistic impact test: flat panels complete
- Identification of tech gaps

Phase II

- Testing of more complex structures
- Validation of PDA models

Significant strides have been made towards the goal of using simulation of composites in impact applications

Acknowledgements

- This effort was performed under the support of the NASA Advanced Composites Project and Consortium
 - Industry wide effort to reduce composite aircraft certification timeline by 30% by improving technology in manufacturing, testing, analysis, etc.
 - Study was a product of the research involving development of PDFA tools for high energy dynamic impact
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

Questions?

Test-Analysis Comparison

Test-Analysis Comparison

Load Cell

Ballistic Impact Testing Overview

Ballistic Impact Testing

Amplitude data is on the left, time of flight (TOF) data is on the right

Ballistic Impact Testing

Test-Analysis Comparison

Material Model Characterization

