

Effect of Control Mode and Load Rate on Fracture Toughness of Brittle Ceramics

Bronson Hausmann Case Western Reserve University Cleveland, Ohio

> Dr. Jonathan Salem NASA GRC Cleveland, Ohio

Background – Fracture Toughness

- Key design parameter for brittle materials
- Endpoint of the slow crack growth (SCG) curve
- Materials need to be investigated in varied environments for aerospace applications (high vacuum to humid launch pad)

Background – Stress Corrosion

- Materials under stress exhibit slow crack growth in corrosive environments
- For some materials (silica glasses, silicon nitrides) sensitivity extends to humid air
- Stress corrosion susceptibility implies test rate and control mode sensitivity
 - New surface creation (crack growth) rate is negatively correlated with strength for

stress corrosion-sensitive materials

S. W. Freiman, S. M. Wiederhorn, and J. Mecholsky John J., "Environmentally Enhanced Fracture of Glass: A Historical Perspective," *Journal of the American Ceramic Society*, vol. 92, no. 7, pp. 1371–1382, Jul. 2009.

Procedure

- Testing in accordance with ASTM 1421
 - Standard Test Method for Fracture Toughness of Advanced Ceramics at Ambient Temperatures
 - Chevron-notched beam, four-point bending
- Testing controlled by PID (proportion-integral- SPECIMEN derivative) feedback loop
- Stroke control testing via system displacement transducer
- Strain control via back face strain gage
- CMOD control via laser micrometer

ASTM C1421-15, Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, ASTM International, West Conshohocken, PA, 2015, www.astm.org.

d TEST SPECIMEN So So So Support ROD Support ROD Support

Approach – Control Mode

- Crack growth stability beyond peak loads is necessary for energy calculations.
 - Want to avoid catastrophic/instantaneous crack extension
- Stability is achieved through stiff testing equipment (load cell and actuator)
- Testing control mode affects stability

- CMOD (crack mouth opening displacement) control >= Strain Control > Stroke Control
- CMOD testing difficult to achieve in brittle, low fracture toughness materials due to a low signal to noise ratio. Stiff (high capacity) load cells can be used to test low fracture toughness brittle materials.

Garcia-Prieto, A., Hernandez, J., Lopez, M., and Baudin, C., "Controlled fracture test for brittle ceramics," Journal of Strain Analysis, vol. 46, 2011, pp. 27–32.

Procedure – CMOD Measurement

CMOD testing via laser

micrometer measurement

- Proved difficult to maintain feedback loop
- Can easily measure CMOD, difficult to test at a set CMOD rate
- Linearly related to back face strain

Procedure – Tested Materials

- ALSIMAG Alumina
 - Moderate stress corrosion expected
- α-Silicon Carbide
 - Little to no stress corrosion expected
 - Have observed no response to changes in humidity
 - Rate effect left to future work, suspected to be negligible
- AS800 Silicon Nitride
 - Slight stress corrosion expected

Tested Materials – ALSIMAG Alumina

• Both rate effect and environmental stress corrosion observed:

Test Specimen K_{Ivb} (A) MPa \sqrt{m}	Test Environment				
	Water	Air	Silicone Oil or Dry N ₂		
0.05 mm/min	2.75 ± 0.01 (4)	3.19 ± 0.07 (7)	3.37 ± 0.05 (4)		
0.01 mm/min	2.64 ± 0.06 (3)	2.93 ± 0.10 (3)	3.39 ± 0.02 (2)		

- Difference of about 20% between water and N₂ testing. Testing rate affected results by 4~8%, with a consistent trend
- Decrease in fracture toughness with test rate implies corrosion effect; most of the effect was eliminated with $\rm N_2$
- Future testing planned

Tested Materials – α SiC in Strain Control

- Possible environmental stress corrosion observed, negligible rate effect
- Preliminary data, too low of sample size for meaningful conclusion

Material	<i>K_{Ivb}</i> MPa√m	<i>K_{Ipb}</i> MPa√m	<i>K_{Isc}</i> MPa√m	
α-SiC (JAS)	2.61 ± 0.05	2.58 ± 0.08	2.76 ± 0.08	
α-SiC (UW)	2.62 ± 0.06	2.54 ± 0.20	2.69 ± 0.08	
ADS96R	3.56 ± 0.03	3.71 ± 0.10		
ALSIMAG 614	3.19 ± 0.06	3.09 ± 0.17	3.18 ± 0.10	
ALSIMAG 614	3.13 ± 0.03	2.98 ± 0.06		
NC132	4.60 ± 0.13	4.59 ± 0.12	4.55 ± 0.14	
NT154	5.18 ± 0.11	5.21 ± 0.02	5.80 ± 0.23	
SN260	5.19 ± 0.06	5.13 ± 0.15		
SiAlON		2.45 ± 0.09	2.55 ± 0.05	

"Stress Intensity Factor Coefficients For Chevron-Notched Flexure Specimens and A Comparison Fracture Toughness Methods," J.A. Salem, L. Ghosn, M.G. Jenkins and G.D. Quinn, *Ceramic Engineering and Science Proceedings*, Vol. 20, No. 3, pp. 503-512 (1999).

Tested Materials – AS800 Silicon Nitride

- Two of three nitrides have very low slow crack growth parameter n; Very limited data, but implication is that some nitrides exhibit SCG like glass.
- Suspect intergranular grain boundary phase as the cause.

Material	SCG Parameter	
	п	
NT154	23	
NT164	27	
PY-6	104	
Glass	21	

$$v = \frac{da}{dt} = A_I K_I^n = A_I^* \left[\frac{K_I}{K_{IC}} \right]^n$$

• Dynamic Fatigue Testing of AS800 left to future work

Results – AS800 Stroke Control

- Stable through max load at all rates except for 0.5 mm/min, which typically failed prematurely
- No well-defined rate sensitivity

Results – AS800 Strain Control – Lab Air

- Stability up to 80 ms/s
- Small but significant rate sensitivity

Results – AS800 Strain Control – Dry N₂

WWW.Nasa.gov 13

Much more consistent result – N₂ removes rate effect, implying humidity was the cause.

Results – AS800 CMOD Control

CMOD Control

Back Face Strain Control

Asymptotic drop in load can be observed as a function of CMOD, with constant CMOD rate; more intuitive curve than BF strain produces

Results – AS800 CMOD Control

CMOD Control

Back Face Strain Control

Asymptotic drop in load can be observed as a function of CMOD, with constant CMOD rate; more intuitive curve than BF strain produces

WWW.Nasa.gov 15

Results – AS800 CMOD Control

Strain vs CMOD

- Difficult to govern CMOD rate using direct measurement, can convert from BF strain however
- Linear relationship dependent on the material

Results – AS800 Stroke/Strain Comparison

- Stroke and strain control shows less than 5% difference over a very wide range of rates
- Stroke control produces less than 2% variation over a wide range
- Strain control results in lower fracture toughness, exhibits small but systemic increase over an extreme range.
- Testing in nitrogen eliminates strain rate sensitivity (<2%Δ), implying a corrosion-related effect.

Salem, Jonathan & Ghosn, Louis & Jenkins, Michael & Quinn, George. (2008). Stress Intensity Factor Coefficients for Chevron-Notched Flexure Specimens and a Comparison Fracture Toughness Methods. Ceram. Eng. Sci. Proc. 20. 503 - 512. 10.1002/9780470294567. ch58.

Choi, S.R. & Pereira, M.J. et al. "Foreign Object Damage Behavior of Two Gas-turbine Grade Silicon Nitrides by Steel Ball Projectiles at Ambient Temperature," NASA TM 20020082954, August 2002.

AS800 – Summary of Values

Testing Environment	Testing Mode and Rate (number of tests)	Fracture Toughness, (Mpa√m)	Deviation from Typical (0.05 mm/min) Test	Nominal time to peak load (s)
	Stroke Control			
	0.005 mm/min	$7.87{\pm}0.05$	+0.48%	600
	0.05 mm/min	7.83±0.16		100
	0.2 mm/min	7.89 ± 0.09	+0.7%	20
	0.5 mm/min	$8.04{\pm}0.05$	+2.7%	10
	Strain Control			
Lab Air	0.1 με/s	7.45 ± 0.15	-4.8%	3300
	1 με/s	7.49 ± 0.28	-4.4%	300
	10.25 με/s	7.60 ± 0.22	-3.0%	50
	40 με/s	$7.81{\pm}0.10$	-0.03%	10
	80 με/s	7.98±0.13	+1.96%	5
	CMOD Control			
	0.04 µm/s	7.66 ± 0.45	-2.3%	50
Dry Nitrogen	Strain Control			
	1 με/s	7.81 ± 0.18	-0.03%	300
	40 με/s	7.95±0.12	+1.0%	10
	80 με/s	7.94±0.59	+1.3%	5
All Data		7.79±0.19	-0.05%	

 Least difference occurs for stroke control

- Most difference for strain control
- Nitrogen eliminates the effect

Conclusions

- Regardless of mode and environment, data converges for 5-10 second failure time
- 5% deviation in fracture toughness of AS800 with test rate, caused by humidity during testing; Confirmed with testing in N₂
- Similar trend found in ALSIMAG Alumina. SiC in progress, does not yet seem to exhibit stress corrosion
- CMOD can be correlated to back face strain linearly, allowing for constant CMOD rate
 in strain control
- CMOD as test metric may provide a more useful view of stable crack growth for energy calculations
- For general purposes, stroke control worked very well when testing silicon nitride with the chevron notch beam

Future Work

- Comprehensive testing of SiC and soda lime glass to examine highly sensitive and insensitive materials
- Dynamic fatigue testing of materials to quantify stress corrosion behavior in various environments
- N₂ testing of AS800 chevrons in stroke control to confirm increased stress corrosion from strain control
- Improvement of CMOD control capabilities

Acknowledgements

- NASA GRC
- Dr. Michael Jenkins
- ACerS Engineering Ceramics Division