Application of Ab initio Methods in the Development of Advanced Technical Ceramics

Jon Goldsby, PhD, MBA

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

Ce = [Xe] $f^{1}5d^{1}6s^{2}$ O = [He] $2s^{2}2p^{4}$

Vienna Ab-initio Simulation Package

The Vienna Ab-initio Simulation Package, better known as **VASP**, is a package for performing ab initio quantum mechanical molecular dynamics using either Vanderbilt pseudopotentials, or the projector augmented wave method, and a plane wave basis set

Computing Platform

Figure 1: HP Z820 Workstation Block Diagram

HEWLETT PACKARD HP Z820 WORKSTATION 2 INTEL XENON PROCESSORS ALLOWING 32 CORES FOR CALCULATION WITH 192 GB OF RANDOM ACCESS MEMORY

Dielectric ceramic

A simple case: Cerium Oxide

A change to a simpler symmetry reduces the computational load

Elastic Constants calculated results for Ceria

455.0683 188.74757 188.74757 0.00000 0.00000 0.00000 188.74757 455.06836 0.00000 0.00000 0.00000 188.74757 188.74757 455.06836 0.00000 0.00000 0.00000 188.74757 cij[GPa]= 188.74757 0.00000 0.00000 81.48183 0.00000 0.00000 188.74757 0.00000 0.00000 0.00000 81.48183 0.00000 0.00000 0.00000 0.00000 0.00000 81.48183 188.74757

elastic constants c₁₁, c₁₂, c₁₄

and bulk modulus (B = 277.52117 ± 0.348 (GPa)), the mechanical stability criteria

For this case, c_{11} and $c_{44} > 0$ ($c_{11}-c_{12}$) and ($c_{11} + 2c_{12}$).

In addition, the bulk modulus must be greater than c_{12} but less than c_{11} , thus for ceria the mechanical stability requirements are met.

CASTEP Band Structure Band gap is 2.555 eV

CASTEP Partial Density of States

Energy (eV)

Phonon calculation results

CASTEP Phonon Dispersion

Thermoelectric ceramic

• Solid state energy harvesting using waste heat available in gas turbine engine offers potential for power generation to meet growing power needs of aircraft

• Thermoelectric material advances offer new opportunities

Concept Overview

Heat Source

Heat Sink

• Weight-optimized integrated turbine engine structure incorporating energy conversion devices

Complex Skutterudites Thermoelectric (Mackey, Dynys) Nd0.6Fe2Co2Sb11.85Ge0.15

Characteristics for a desirable thermoelectric material

- Seebeck Coefficient ~ 100uV/K
- Electrical Resistivity 10⁻² Ohm*cm
- Thermal Conductivity ~ 10 W/m*K
- Electronic Band Gap -must be greater than zero
- High Temperature Capability

Complex Oxide – based Pyrochlores mixed cation at B-site A_2 (B ³⁺, B^{~5+}) O ₇ Gd_2RuTaO_7

Calculated Cell Parameters

Parameter	Original	change	Final	8
a b	10.091900 10.091900 10.091900	0.158505 0.137867 0.156757	10.250405 10.229767 10.248657	1.6 1.4
alpha beta	90.000000	-0.361354 0.392175	89.638646 90.392175	-0.4
Volume	1027.824144	46.795542	1074.619686	4.6

.759 Mg/	′m^3
----------	------

Elastic	constant	matrix	(GPa):
---------	----------	--------	--------

	1	2	3	4	5	6
1	303.99	122.74	112.40	0.00	0.00	0.00
2	122.74	342.62	128.66	0.00	0.00	0.00
3	112.40	128.66	289.89	0.00	0.00	0.00
4	0.00	0.00	0.00	98.03	0.00	0.00
5	0.00	0.00	0.00	0.00	76.22	0.00
6	0.00	0.00	0.00	0.00	0.00	88.62

Modulus	Voigt	Reuss	Hill	
Bulk	184.90	183.56	184.23	GPa
Shear	90.75	89.78	90.27	
Young's	233.98	231.59	232.78	
Longitudinal			304.59	

Velocity of sound

Calculated	from	Hill	moduli:
------------	------	------	---------

transverse waves:	3271	m/s
longitudinal waves:	6009	m/s
mean:	3649	m/s

Debye temperature: 465.9 K

the thermal coefficient of linear expansion at $600K = 7.60 \times 10^{-6}$

Calculated Electronic Band Structure

Perdew – Ernzerhof – Burke (PBE)

Heyd –Scuseria -Ernzerhof (HSE06)

Electrical Conductivity

BoltzTraP. A code for calculating bandstructure dependent quantities *

Georg K.H. Madsen a,*, David J. Singh b

Computer Physics Communications 175 (2006) 67–71

Molecular Dynamic Computational Results: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

 $2Gd_2O_3 + Ta_2O_5 + 2RuO_2$

2Gd₂(Ta, Ru)O₇ + ¹/₂ O₂

Solid state reaction, mechanical mixing, sintering in air, hot pressing

Complex Oxide – based Pyrochlores mixed cation at B-site A₂ (B ³⁺, B^{~5+}) O₇ Gd₂RuVO₇

$2Gd_{2}(CO_{3})_{3} + 1/2V_{2}O_{5} + 2RuO_{2} - 2Gd_{2}RuVO_{7} + 6CO_{2} + 1/2O_{2}$

Experimental Seebeck coefficient and Resistivity data for Gd₂ RuVO₇

Magnetic material

First-Principle and Experimental Study of a Gadolinium Praseodymium Cobalt Pseudo-binary Intermetallic Compound

Parameter	Ferromagnetic	Paramagnetic	Antiferromagnetic	Ferrimagnetic
2*Integrated Spin Density	nonzero, the same magnitude	zero	zero	non-zero
2*Integrated Spin Density	nonzero, the same magnitude	zero	non-zero	non-zero larger magnitude

GdPrCo17	Density	Lattice	Magnetization
	(g/cm3)	Parameter	(Amperes*meter^2
		(Angstrom)	per kg)
CASTEP	8.37	a=b=8.46,	158
		c=12.47	
VASP	8.82	a=b=8.35,	110
		c=12.17	
Experiment	8.46	a=b=8.41,	93
		c=12.23	

CONCLUSIONS

- Computational methods parameters can be used for predictions and to aid in the development of ceramic materials.
- Some descriptions (band structure) are very sensitive to such things as mesh density.
- Ceramics such oxide pyrochlores have potential as thermoelectric materials.
- Nature is always right!