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Outline

1. Electroformed nickel replication (ENR)– Brian Ramsey
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Bongiorno
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Electroformed Nickel Replication (ENR)
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ENR– Current and Recent Programs

ART-XC instrument on Spectrum 
Rontgen Gamma Mission FOXSI (Rocket) IXPE Small Explorer

HERO

Non-Astronomical Applications

Neutron Imaging Plasma Diagnostics

FOXSI Small Explorer 
(Phase A study)
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New Developments 
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Challenge
• The optical figure of mandrels used to produce replicated nickel cobalt grazing 

incidence optics directly impacts performance of the optic.  

Objective
• Reach sub-arcsecond half-power diameter (HPD) mandrel figure error to enable 

future missions.

Approach:
• Test methods for aligning Zeeko CC polishing machine coordinates with mandrel 

coordinates with mandrel fiducials.
• Continue improving surface roughness and polishing wear function stability by 

adjusting abrasive slurry parameters.
• Polish mandrels with Zeeko machine for shape correction and super polish with 

large laps to achieve final surface roughness.
• Estimate finished mandrel performance with mandrel metrology on Zygo

interferometer at MSFC. 

Computer Controlled (CC) Polishing
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Computer Controlled (CC) Polishing

CC polishing process loop
1. Characterize machine/bonnet wear 

function
2. Map optic/mandrel surface error
3. Deconvolve surface error map with wear 

function to generate toolpath
4. Polish optic
5. Iterate
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Cylindrical Correction Complete, azimuthal average, Polishing time: 71.5 hours 

before after
Figure error (St. Dev.) 500 nm 10.7 nm

Slope error (> 2 cm) (RMS) 6.32 arcsec 0.30 arcsec

Low frequency (> 7 cm) slope error (RMS)   2.66 arcsec 0.09 arcsec

Mid frequency (2-7 cm) slope error (RMS) 5.73 arcsec 0.29 arcsec

Computer Controlled (CC) Polishing ART M26H

Full width at half max ≈ 6.66 * RMS slope error = 2.00 arcsec
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Computer Controlled (CC) Polishing

TRL Level
Currently at ~ 3

Challenges and future work
• Complete test mandrel polishing and quantify surface quality 

improvement.

Applicable to Athena
Yes, for direct polishing of full-shell optics.
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Challenge
• Future X-ray missions require large effective area, lightweight, high angular resolution 

grazing incidence optics.
Objective
• Using high specific stiffness metal materials (Be, AlSi, AlBe), produce sub-arcsecond

grazing incidence full-shell optics approximately 3 mm thick.

Approach:
• Diamond turn inner and outer surface of as-purchased metal/metal-composite 

shells.
• Implement in-situ metrology to measure the shape of the shell while mounted in the 

polishing machine.
• Directly polish shells in the Zeeko machine at MSFC.
• If needed, apply differential deposition in chamber at MSFC to improve mid-spatial 

frequency shape error.

Thin-shell direct fabrication
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Thin-shell direct fabrication

Aluminum surrogate shell Shell support structure

Shell support structure 
mounted to diamond 
turning machine
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Thin-shell direct fabrication

TRL Level
Currently at ~ 2

Challenges and future work
• Delivery of 3 mm thick figured and polished NiP plated aluminum shell
• Design of X-ray test support fixture, and cross-calibrated verification of in-

situ metrology system.  Delivery of X-ray test support fixture and verification 
of the 3 mm and 1.5 mm thick mirrors via X-ray testing.

Applicable to Athena
Yes, for direct polishing of full-shell optics.
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Differential Deposition - Overview

Objective
Develop a process to provide post-
fabrication improvement to x-ray optics

Approach
Use physical vapor deposition to 
selectively deposit material on mirror 
surface to reduce figure errors
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Differential Deposition - Process

Surface profile 
metrology

Develop correction 
profile “Hitmap”

Simulations – translation 
velocity of shell 

Differential deposition

Surface profile 
metrology

X-ray testing

Simulation of successive corrections with finer slitsDifferential deposition 
process flow
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Differential Deposition - Results

Uncorrected region

Corrected regions

Axial figure profiles: Initial (blue), after 1 
correction pass (red), after 2 correction 
passes (black)

Intra-focus x-ray image showing uncorrected 
and corrected mirror quadrants

• Using ART-XC mirror shells , have obtained a factor of > 2 improvement in 
agular resolution for a single stage of correction from 17 arcsec to 7.2 arcsec
HPD.

• Metrology on mirror shell with 2 stages of correction shows factor of 3 
improvement from 17 arcsec to 5 arcsec HPD.
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Differential Deposition

TRL Level
Currently at ~ 3

Challenges and future work
• Assess coating-stress effects. 
• Implement active slits to compensate for change of internal diameter 

of shell with length (less of a challenge for large-diameter optics)
• Develop in-situ metrology
• Develop custom masks for rapid correction

Applicable to Athena
Yes, for figure control of full shell (or segmented) optics.
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Thin Film Coatings- Overview

Challenge
• Small amounts of coating stress can significantly distort a large thin-shell optic.

• Preservation of substrate figure after deposition of x-ray reflective coatings is a 
leading technological challenge.

Objective
• Develop advanced low stress x-ray optical coatings (single-layer and multi-layer) that 

will enable future missions.

Approach:
• The use of a proven novel highly-sensitive method of in-situ stress measurement 

that will be adapted to curved substrates.
• Investigate stress growth in films and methods for its reduction.

• The design and implementation of a novel single and multilayer coating scheme for 
achieving inherently uniform coatings on flat and curved segments.
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Thin Film Coatings- In-Situ Stress Measurement Method

𝜎𝜎ℎ𝑓𝑓 =
𝐸𝐸𝑠𝑠ℎ𝑠𝑠2𝛿𝛿𝑥𝑥

3 1 − 𝜈𝜈𝑠𝑠 𝑥𝑥2

• Film stress deforms figured
substrates and degrades imaging 
resolution.
• We measure stress in-situ using
a high resolution (i.e. 5 nm) fiber 
optic displacement sensor.
• The sensor measures the
cantilever tip deflection caused
by the film stress which is calculated
using the Stoney Eqn:

noise, nm
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Thin Film Coatings- Zero Stress Iridium

• The requirements for missions are typically satisfied with 10-20 nm of Ir
• Through Ar pressure optimization we can reduce the stress to near zero 

(measured 3 orders of magnitude decrease) 
• Surface roughness increases from 3 to 4.5Å 

-3.7 GPa

~ Zero stress
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Thin Film Coatings- Capability at MSFC

• Procured with MSFC innovation funding (CIF) 
award

• For development of depth graded ML’s 
Designed for flexibility in deposition geometry

• Currently utilizes up to four 2 in. dia. circular 
cathode positions 

• Ion milling capability
• Spinning substrate holder 

• Holds up to 4 inch dia. substrates 
• Bias can be applied 

• Future work includes system upgrade to
expand capability to coat segmented substrates
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Thin Film Coatings- Measurement

Depth graded ML for
broadband response

Periodic ML for high resolution
wavelength selective applications

MSFC X-Ray
Reflectometer used 
to measure thin film
properties
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Thin Film Coatings

TRL Level
Currently at ~ 3

Accomplishments
• Reduced iridium coating stress by three orders of magnitude by exploiting the film’s 

growth mechanism that was revealed by in-situ stress measurement capability.
• Demonstrated approach for achieving targeted reflectivity response of the depth 

graded multilayer coatings.

Challenges and future work
• Completion of new deposition system design to enable the coating and in-situ 

stress measurement of curved optical segments
• Development of in-situ stress measurement during thermal annealing processes

Applicable to Athena :
Yes, to maintain figure of full shell (or segmented) optics.
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Full-shell Optic Fabrication Process Applicable to Athena

Diamond turning
TRL~2

Computer controlled polishing
TRL~3

Differential deposition
TRL~3

Machined mirror blanks

Low-stress reflective 
coatings
TRL~3

Alignment and module integration
TRL~3
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