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NASA Advanced EBC and CMC System Development 
− Emphasize temperature capability, performance and long-term durability
• Focus on highly loaded EBC-CMC Systems
• 2700-3000°F (1482-1650°C) turbine airfoil and CMC combustor coatings
• 2700°F (1482°C) EBC bond coat technology for supporting next generation 

turbine engines
– Recession: <5 mg/cm2 per 1000 h
– Coating and component strength requirements: 15-30 ksi, or 100 - 207 Mpa
– Resistance to CMAS 
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Outline
• Advanced environmental barrier coating (EBC) system development: Prime-

reliant coating design as consideration
• Advanced bond coat developments, including HfO2-Si and Rare Earth-Si 

systems
- Recent developments on HfO2-Si based bond coat and multicomponent (Yb,Gd,Yb)2Si2-

2xO7-x EBCs, integrated with 3D architecture CVI+PIP SiC/SiC ceramic matrix composites
– Optimizing compositions and processing
– Determining fundamental properties and upper use temperature limits

• Durability considerations: advanced 2700°F+ capable EBC developments
– Focus on EBC-CMC system approaches, creep - fatigue – environmental 

interactions: rig durability demonstrations
– Innovative modeling in supporting the coating developments, design tools, 

and life prediction 
• Environmental resistance, durability and component tests

─ The EBC durability evaluations
─ Continuing the various rig tests, improving technology readiness levels, and 

transitioning EBCs for engine tests

• Summary and conclusions
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NASA EBC and CMC System – Prime-Reliant Design 
Considerations

─ Temperature capability is crucial for long-term durability, among other coating 
requirements, such as water vapor stability and phase durability, for advanced 
high pressure, high bypass turbine engines

─ Advanced EBCs require high strength and toughness to be prime-reliant
• Resistance to heat-flux (thermal gradients), high pressure  combustion environment, 

creep-fatigue loading interactions
• Bond coat cyclic oxidation resistance 

─ EBCs need erosion, impact and calcium-magnesium-alumino-silicate (CMAS) 
resistance and interface stability

• Emphasize the multiple mechanism interactions

─ EBC-CMC systems with affordable processing 
• Using existing infrastructure and alternative coating production processing systems, 

ensuring high stability coating systems, including Plasma Spray, EB-PVD and Directed 
Vapor EB-PVD, and/or emerging Plasma Spray - Physical Vapor Deposition

• Affordable and safe, suitable for various engine components
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High Toughness HfO2-Si Bond Coat Composition Development

5

– HfO2-Si Bond coats showed high toughness
• Toughness >4-5  MPa m1/2 achieved
• Emphasis on improving the lower temperature toughness, eliminating free Si or SiO2
• Annealing effects on improved lower temperature toughness being studied 
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NASA Advanced EBC - Bond Coat Systems
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NASA EBC Systems
• HfO2 -RE2O3-SiO2/RE2Si2-xO7-2x environmental barrier systems

• Controlled silica content and rare earth dopant content to improve EBC stability, 
toughness, erosion and CMAS resistance

• HfO2-Si based bond coat, controlled oxygen partial pressure via compositions
• Advanced rare earth-Si composition systems for 2700°F+ long-term applications

• Early RE2O3-SiO2-Al2O3 or YAG Systems 
• Develop prime-reliant composite EBC-CMCs, HfSiRE(CN) systems (beyond Hf-RE-Si based 

bond coats)

Bond coat systems for prime-reliant EBCs; capable of self-healing
US Patent 7740960; US Utility Patent Applications NASA LEW 18949-1, LEW 18949-2, LEW-19435, LEW-19456, LEW-19512, and LEW-19595,
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HfO2-Si Bond Coats EB-PVD Processing and Composition 
Optimizations

─ Early EB-PVD HfO2-Si bond coat process and composition optimizations
─ Achieving lower oxygen, low silicon, robust processing, and durable coatings at the SiC/SiC-

bond coat interface
─ Controlling pO2 was a major objective
─ Similar developments for RE-Si (O) and RE-Hf-Si(O) bond coats
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HfO2-Si Bond Coats EB-PVD Processing and Composition 
Optimizations - Continued
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─ Early EB-PVD HfO2-Si bond coat process and composition optimizations
─ Preferred HfO2, Si co-deposition, or hybrid HfO2, Si co-deposition + alternating layering 

structures
─ Achieving lower oxygen, low silicon, robust processing, and durable coatings at the SiC/SiC-

bond coat interface, controlling pO2 was a major objective
─ Similar developments for RE-Si (O) and RE-Hf-Si(O) bond coats

HfO2-Si surface

Hf

Hf HfHfHfO

Low and controllable oxygen content

1500°C, 50h, laser heat flux rig tested
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– The composites coatings have improved creep strength, and creep resistance at 
high temperatures

– Increased HfO2-HfSiO4 contents improve high temperature strength and creep 
resistance

– Low diffusion with controlled oxygen content, and HfO2-HfSixOy

9

Effects of Compositions on HfO2-Si Strength and
Creep Rates
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Advanced 2700°F+ HfO2-Si Bond Coats
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̶ High Resolution TEM Images showing advanced compositions ensuring high 
strength, high stability, high toughness, and low diffusion

 
HRTEM of Si matrix. B) HRTEM of HfO2-HfSiO4 structure. C) Zoomed in view of HfSiO4 structure in B) showing 4.52 

Å spacing of (101) plane. D) Zoomed in view of HfO2 structure in B) showing 2.83 Å spacing of (111) plane. 
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A. L. Robertson, F. Solá, D. Zhu, J. Salem, K W. White, Microscale Fracture Testing of HfO2-Si Environmental Barrier Coatings, in press.
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Recent Testing and Development of NASA Advanced Multicomponent Yb-Gd-Y 
Silicate EBC/HfO2-Si System on 3D Architecture CVI+PIP SiC/SiC CMC under 

2700°F+ SPLCF Conditions
• Two EBC specimens tested under the laser heat flux test rig under 10 ksi (500 hr) and 15 ksi

(140 hr completed) SPLCF conditions, respectively, durability tested in air
• Advanced EBC-CMC specimens tested in isothermal furnace test at 2700°F, 300 h completed 

for comparisons
• Various laser tests for coating composition down-selects and failure mechanism modeling

RB2014-54-4, EBC 512h/CMC 492h RB2014-54-6, EBC 140h 

RB2014-54-8, Isothermal furnace 300hr  

Laser III MTS 810 Test rig

Tsurface 2912-3090°F
Tinterface ~2700°F
TCMC back 2400-2450°F

EBC

Bond Coat

SiC/SiC CMC

Example EBC cross-section

Laser rig test creep strains

Developing laser rig based 
NDE and in-plane thermal 

conductivity measurements 
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Laser Rig Testing and Advanced EBC Development
• Multicomponent EBC vane process developments, for rig and component testing
• Witness specimens also processed for evaluation
- CMAS testing response under heat flux and furnace
- Laser steam tested HfO2-Si bond coat specimens

RB2014-54-4, EBC 
512h/CMC 492h

RB2014-54-6, EBC 140h 

EBC

Bond Coat

SiC/SiC CMC

Example EBC cross-section

Laser rig test SPLCF creep strainsTurbine vanes with EBCs

Witness Specimens Processed with EBCs (on 3D Architecture 
CVI+PIP CMCs)

The TTT Augmentation Project 
Coated Turbine Vanes (Advanced EB-

PVD NASA composition  coatings)

EBC 296

EBC 297 EBC 298 EBC 299
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Selected Recent Tested Specimens – EBC Tests 

2700°F, 100 h laser steam cyclic test (1 h cycles), some interface diffusion 
and SiO2 – rich phase separation (as we observed in the past)

286 534

EBC 278 bond coat 
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Selected steam furnace tested advanced HfO2-Si-EBC 
specimens early 

278 HfO2-Si coating, 
Laser steam cyclic, 100hr
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Steam Cyclic Tests of Turbine Vane Turbine Vane Process Witness Samples – in a 
little more SiO2 rich Steam Environments (2600°F on CVI+PIP CMC Substrates 

(Interface Reaction and Oxidation will be further Studied)

EBC 296 – had interface debond EBC 297

EBC 297 EBC 298
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Advanced EBC Development and Laser – High Heat Flux Rig Test 
Developments, understanding the Delamination Mechanics

• The work has been focused on the HfO2-Si bond coat composition effects and the diffusion 
barrier performance of HfO2-Si bond coats and NASA multicomponent EBCs.

• Diffusion couples are being studied in understanding HfO2-Si bond coat diffusion and kinetics
• Expanding to SiHf-CN and HfSiRE-CN based high strength high toughness coating and/or 

CMC integration, and focusing on high-heat-flux test & stress tolerance

Laser steam cyclic (EBC 278 series), 
1500°C 100h

HfO2-Si bond coat, heat flux delamination, some 
volatility of SiO2 rich compositions, and interface 
reactions – high toughness bond coat is crucial

HfO2-Si bond coat, interface reactions, SiO2 formation in presence 
vertical cracks reactions

Furnace steam test (EBC 286 series), 1426°C (2600°F), 100 hr, 
observed porosity formation, SiO2 rich phase separation from 
Bond coat, and SiO2 formation from a vertical crack

Laser high heat flux test rig
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Coating Safe Design Approach
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Advanced EBC Development and Laser and JETS High Heat Flux Rig 
Test Development for Comparisons

• Selected samples including the turbine vane samples being 
tested in high heat flux JETS rig (including the vane witness 
samples) in Praxair under a NASA contract, up to 100h tests 
including CMAS tests

• Turbine vane witness samples evaluated in the JETS tests
• Currently emphasis focused on comparisons of steam 

furnace, laser heat flux steam, and JETS tests
– Crucial in studying advanced modeling 
and mechanism interactions

EBC

Bond Coat

SiC/SiC CMC

Example EBC cross-section

High heat flux JETS testing

TTT Augmentation Project 
Coated Turbine Vanes 

(Advanced EB-PVD NASA 
composition  coatings)

Some tested specimens

Witness samples 
Tested in JETs 
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Some CMAS Reaction Perspectives of NASA Multicomponent EBCs –
Initial Test Results

• CMAS is of serious concern for EBCs
• Increasing coating temperature capability and reducing diffusion with defect cluster coating 

concepts are among the main approaches for improving CMAS resistance

1500°C, 100 hr, furnace exposed in air1300°C, 5 h, furnace exposed, in air

CMAS Melts

EBC bond coat

EBC-CMAS reacted

Apatite reaction layer

HfO2-Si based bond coat 
region

SiC substrate HfO2-Si based 
bond coat region

SiC substrate

SiC substrate
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Summary and Conclusions
• Advanced HfO2-Si and Rare Earth- Silicon based bond coat compositions 

developed, composition and processing are still being optimized
• The coating has showed excellent oxidation resistance and protection for CMCs
• HfO2-Si EBC bond coat showed excellent strength, fracture toughness and 

thermal mechanical fatigue resistance
• Laser heat flux steam tests have been conducted and compared furnace steam 

cyclic tests, interface reactions will be further studied
• The coatings showed 2700°F operating temperature viability and initial 

durability on SiC/SiC ceramic matrix composites; continued processing 
optimization and robustness are being addressed 

• The current emphasis has been placed on integration with CVI-PIP substrates, 
and also improving the CMAS resistance of advanced EBCs

Future plans
• More advanced hafnium-rare earth silicate EBC-hafnium rare earth-Si (O) bond 

coat systems will be further investigated
• NASA advanced EBCs also included HfSiRECN systems for helping develop 

prime-reliant EBCs
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