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RELEVANCE OF THE AMERICAN STATISTICAL SOCIETY’S
WARNING ON p-VALUES FOR CONJUNCTION ASSESSMENT

J. Russell Carpenter∗, Salvatore Alfano†, Doyle T. Hall‡, Matthew D. Hejduk§,
John A. Gaebler¶, Moriba K. Jah‖, Syed O. Hasan∗∗, Rebecca L. Besser††, Russell

R. DeHart††, Matthew G. Duncan‡‡, Marissa S. Herron§§and William J. Guit¶¶

On March 7, 2016, the American Statistical Association issued an editorial
paper on the “context, process, and purpose of p-values.” According to the pa-
per, “the statement articulates in non-technical terms a few select principles that
could improve the conduct or interpretation of quantitative science, according to
widespread consensus in the statistical community.” These principles would ap-
pear to have some relevance to the spacecraft conjunction assessment community.

INTRODUCTION

On March 7, 2016, the American Statistical Association (ASA) issued an online editorial pa-
per1 on the “context, process, and purpose of p-values.” According to the paper, “the statement
articulates in non-technical terms a few select principles that could improve the conduct or interpre-
tation of quantitative science, according to widespread consensus in the statistical community.” This
“consensus” statement was accompanied by 21 “commentaries” expressing a diversity of opinions
among the panel of experts ASA convened. In the present work, we express our view that the ASA
p-value warning has relevance to the space object Conjunction Assessment (CA) community.

The ASA Editorial gives an informal definition of a p-value as follows: “Informally, a p-value is
the probability under a specified statistical model that a statistical summary of the data (for example,
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the sample mean difference between two compared groups) would be equal to or more extreme than
its observed value.” A slight rephrasing of the definition will place it into the CA context: The
collision probability, Pc, is the probability, under a specified set of modeling assumptions, that the
estimated distance between two space objects would be equal to or less than the value we infer
from our observations. More specifically, p-values are often used in statistical hypothesis testing to
assess whether or not a decision to reject a hypothesis is justified. In CA, we are faced with a similar
decision concerning whether or not to perform some kind of mitigation, such as a maneuver.

IS PC A P -VALUE?

Based on the ASA’s informal definition quoted above, it would seem that the answer to the ques-
tion posed by this section is yes. However, the more familiar context for p-value usage is that of
hypothesis testing, which begs the question as to whether Pc is used by the CA community, explic-
itly or implicitly, in a statistical hypothesis test. In such tests, one seeks to use uncertain or noisy
data to inform a decision whether to reject a model hypothesized to give rise to the observed data.
In one of the simplest hypothesis tests, one computes how unlikely the observations would be if the
hypothesized model were true. The degree to which the observations are likely given the model is
quantifiable as a probability, which is known as p. Therefore, when p is “small enough,” it is com-
mon practice to formally reject the null hypothesis that the model is true, conditional on a particular
set of observations and the strategy used to collect those observations.

What we have just described bears more than a passing resemblance to the CA process. The usual
purpose of CA is to inform a decision, made under uncertainty, about whether to mitigate the risk
posed by a conjunction or not. Given assumptions on the physics and sensors, we use observations to
infer statistically probable trajectories. We propagate these orbits to an interval associated with the
predicted conjunction, along with models of how uncertainty in the observations and the propagation
models maps into uncertainty in the orbits, usually in the form of a covariance matrix. We use the
propagated orbit and its covariance to compute a probability, Pc, and if Pc is “small enough,” we
generally take no action to mitigate the risk of a collision. All that we need to cast the CA process
into the realm of a hypothesis test is to formally state the null hypothesis that we are rejecting when
we find small values of Pc. Our rephrasing of the ASA definition points to how this null hypothesis,
Ho, for CA might be formulated:

Ho: The estimated distance between two space objects is less than or equal to the combined
hard-body radius of the objects.

Thus, when Pc is appropriately small, and when the predicted miss distance is adequately large,
this suggests that the observed tracking data, when fit to our orbit models, are inconsistent with a
collision between the objects, and hence we are rejecting the null hypothesis above. When we decide
to perform a CA risk mitigation maneuver, we have at least implicitly accepted (or technically, failed
to reject) such a null hypothesis.∗

Despite the apparent correspondence between Pc and p-values, this paper’s appendix describes
how they are different. The appendix provides two examples of hypothesis tests involving p-values
∗Such a decision is subject to errors of two types. An error of Type I is rejecting the null hypothesis when it is true,

which in the context of this paper’s hypothesis is a missed detection or missed alarm. An error of Type II is is accepting
the null hypothesis when it is false, which in the present context leads to a needless mitigation maneuver, or false alarm.
Although any individual decision will be either right or wrong, our goal ought to be establishing a decision procedure
whose error rates “in the long run” will limit decision errors to acceptable rates.
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that compare and contrast a classic textbook example of a test on the mean of a normal distribution
with a test that approximates a CA decision. The appendix shows that in fact Pc is not quite the
same as a p-value, but more closely resembles the complement of a confidence value derived from
the estimated miss vector and its associated covariance. The corresponding confidence interval has
as its lower endpoint the combined hard-body radius. Since this confidence interval corresponds to
a family of significance tests, there is an approximate correspondence between Pc and p-values, but
they are conceptually different quantities.

THE SIX ASA PRINCIPLES

Having established that the CA process is at least implicitly using Pc in the manner of a p-
value, we now examine the six principles ASA advocates to improve how analysts and decision-
makers use p-values. In the following tables, we place direct quotations of the six ASA principles
concerning p-values from Reference 1 into a side-by-side comparison context with our rephrasings
of the principles to place them into the CA context.

Table 1: ASA’s Principle 1

“P -values can indicate how incompatible the data are with a specified statistical model.”
ASA’s Explanation Annotated for CA Context
A p-value provides one approach to summariz-
ing the incompatibility between a particular set
of data and a proposed model for the data. The
most common context is a model, constructed un-
der a set of assumptions, together with a so-called
“null hypothesis.” Often the null hypothesis pos-
tulates the absence of an effect, such as no differ-
ence between two groups, or the absence of a re-
lationship between a factor and an outcome. The
smaller the p-value, the greater the statistical in-
compatibility of the data with the null hypothe-
sis, if the underlying assumptions used to calcu-
late the p-value hold. This incompatibility can be
interpreted as casting doubt on or providing evi-
dence against the null hypothesis or the underly-
ing assumptions. [emphasis added]

A p-value provides one approach to summariz-
ing the incompatibility between a particular set of
[tracking] data and a proposed model for the data
[which is that the space objects being tracked will
collide]. The most common context is a model,
constructed under a set of assumptions [e.g. “co-
variance realism,” etc.], together with a so-called
null hypothesis. [. . . ] The smaller the p-value, the
greater the statistical incompatibility of the data
with the null hypothesis [that the space objects
will collide], if the underlying assumptions used
to calculate the p-value hold. This incompatibil-
ity can be interpreted as casting doubt on or pro-
viding evidence against the null hypothesis [that
the space objects will collide] or the underlying
assumptions [e.g. the combined covariance is re-
alistic, etc.].
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Table 2: ASA’s Principle 2

“P -values do not measure the probability that the studied hypothesis is true, or the probability
that the data were produced by random chance alone.”
ASA’s Explanation Annotated for CA Context
Researchers often wish to turn a p-value into a
statement about the truth of a null hypothesis,
or about the probability that random chance pro-
duced the observed data. The p-value is neither. It
is a statement about data in relation to a specified
hypothetical explanation, and is not a statement
about the explanation itself.

[Owner/Operators] often wish to turn a p-value
into a statement about the truth of a null hypoth-
esis [that the space objects will collide], or about
the probability that random chance produced the
observed data. The p-value is neither. It is a state-
ment about [whether tracking data are consistent
with the hypothesis that the space objects being
tracked will collide], and is not a statement about
[whether or not the space objects will actually col-
lide].

Table 3: ASA’s Principle 3

“Scientific conclusions and business or policy decisions should not be based only on whether a
p-value passes a specific threshold.”
ASA’s Explanation Annotated for CA Context
Practices that reduce data analysis or scientific
inference to mechanical “bright-line” rules (such
as “p < 0.05”) for justifying scientific claims
or conclusions can lead to erroneous beliefs and
poor decision-making. A conclusion does not im-
mediately become “true” on one side of the di-
vide and “false” on the other. Researchers should
bring many contextual factors into play to de-
rive scientific inferences, including the design of
a study, the quality of the measurements, the ex-
ternal evidence for the phenomenon under study,
and the validity of assumptions that underlie the
data analysis. Pragmatic considerations often re-
quire binary, “yes-no” decisions, but this does not
mean that p-values alone can ensure that a deci-
sion is correct or incorrect. The widespread use
of “statistical significance” (generally interpreted
as “p ≤ 0.05”) as a license for making a claim
of a scientific finding (or implied truth) leads to
considerable distortion of the scientific process.

Practices that reduce data analysis or scientific in-
ference to mechanical “bright-line” rules (such as
“[Pc < 1 × 10−4]”) for justifying [that the
conjunction is safe] can lead to erroneous beliefs
and poor decision-making. A conclusion does not
immediately become “true” on one side of the di-
vide and “false” on the other. Researchers should
bring many contextual factors into play to de-
rive scientific inferences, including the design of a
study, the quality of the measurements, the exter-
nal evidence for the phenomenon under study, and
the validity of assumptions that underlie the data
analysis. Pragmatic considerations often require
binary, “yes-no” decisions, but this does not mean
that p-values alone can ensure that a decision is
correct or incorrect. The [possibly] widespread
use of [Pc thresholds] as a license for making a
claim [about the risk of a conjunction] leads to
considerable distortion of the [conjunction assess-
ment] process.
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Table 4: ASA’s Principle 4

“Proper inference requires full reporting and transparency.”
ASA’s Explanation Annotated for CA Context
P -values and related analyses should not be re-
ported selectively. Conducting multiple analyses
of the data and reporting only those with certain
p-values (typically those passing a significance
threshold) renders the reported p-values essen-
tially uninterpretable. Cherry-picking promising
findings, also known by such terms as data dredg-
ing, significance chasing, significance questing,
selective inference and “p-hacking,” leads to a
spurious excess of statistically significant results
in the published literature and should be vigor-
ously avoided. One need not formally carry out
multiple statistical tests for this problem to arise:
Whenever a researcher chooses what to present
based on statistical results, valid interpretation of
those results is severely compromised if the reader
is not informed of the choice and its basis. Re-
searchers should disclose the number of hypothe-
ses explored during the study, all data collec-
tion decisions, all statistical analyses conducted
and all p-values computed. Valid scientific con-
clusions based on p-values and related statistics
cannot be drawn without at least knowing how
many and which analyses were conducted, and
how those analyses (including p-values) were se-
lected for reporting.

[Pc] values and related analyses should not be
reported selectively. Conducting multiple analy-
ses of the data and reporting only those with cer-
tain [Pc] values (typically those passing a signif-
icance threshold) renders the reported [Pc] val-
ues essentially uninterpretable. [. . . ] One need
not formally carry out multiple statistical tests
for this problem to arise: Whenever a [CA an-
alyst] chooses what to present based on statisti-
cal results, valid interpretation of those results is
severely compromised if the [Owner/Operator] is
not informed of the choice and its basis. [CA
analysts] should disclose [. . . ] all data collec-
tion decisions, all statistical analyses conducted
and all [Pc] values computed. Valid [risk miti-
gation] conclusions based on [Pc] values and re-
lated statistics cannot be drawn without at least
knowing how many and which analyses were con-
ducted, and how those analyses (including [Pc]
values) were selected for reporting.
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Table 5: ASA’s Principle 5

“A p-value, or statistical significance, does not measure the size of an effect or the importance
of a result.”
ASA’s Explanation Annotated for CA Context
Statistical significance is not equivalent to scien-
tific, human, or economic significance. Smaller
p-values do not necessarily imply the presence
of larger or more important effects, and larger p-
values do not imply a lack of importance or even
lack of effect. Any effect, no matter how tiny,
can produce a small p-value if the sample size or
measurement precision is high enough, and large
effects may produce unimpressive p-values if the
sample size is small or measurements are impre-
cise. Similarly, identical estimated effects will
have different p-values if the precision of the esti-
mates differs.

Statistical significance is not equivalent to scien-
tific, human, or economic significance [and the
significance of a risk derives from both its like-
lihood and its consequences]. Smaller [Pc] val-
ues do not necessarily imply the presence of [less
risky conjunctions], and larger [Pc] values do not
imply [an elevated risk]. Any [conjunction], no
matter how [risky], can produce a small [Pc] value
if the [covariance is small relative to the miss
distance], and large miss distances may produce
[large Pc values] if the [covariance is commensu-
rately large]. Similarly, identical [miss distances]
will have different [Pc] values if the precision of
the estimates differs.

Table 6: ASA’s Principle 6

“By itself, a p-value does not provide a good measure of evidence regarding a model or hy-
pothesis.”
ASA’s Explanation Annotated for CA Context
Researchers should recognize that a p-value with-
out context or other evidence provides limited in-
formation. For example, a p-value near 0.05 taken
by itself offers only weak evidence against the
null hypothesis. Likewise, a relatively large p-
value does not imply evidence in favor of the
null hypothesis; many other hypotheses may be
equally or more consistent with the observed data.
For these reasons, data analysis should not end
with the calculation of a p-value when other ap-
proaches are appropriate and feasible.

[The CA community] should recognize that a [Pc]
value without context or other evidence provides
limited information. For example, a [Pc] value
near [1 × 10−4] taken by itself offers only
weak evidence against the null hypothesis [that
the space objects will collide]. Likewise, a rela-
tively large [Pc] value does not imply evidence in
favor of the null hypothesis [the space objects will
collide]; many other hypotheses may be equally
or more consistent with the observed data [e.g. the
tracking data are flawed, etc.]. For these reasons,
[conjunction assessment] should not end with the
calculation of a [Pc] value when other approaches
are appropriate and feasible.
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GREENLAND ET AL.’S TWENTY-FIVE MISCONCEPTIONS

It is also helpful to consider a more precise definition of p-value than ASA’s informal definition.
One of the twenty-one commentaries accompanying the publication of Reference 1 is Greenland, et
al.,2 which gives what we find an especially cogent and precise definition:

Specifically, the distance between the data and the model prediction is measured
using a test statistic (such as a t-statistic or a χ2-statistic) [or a non-central χ2 statis-
tic based on Mahalanobis distance for some simplifications of the CA problem]. The
p-value is then the probability that the chosen test statistic would have been at least
as large as its observed value if every model assumption were correct, including the
test hypothesis. This definition embodies a crucial point lost in traditional definitions:
In logical terms, the p-value tests all the assumptions about how the data were gener-
ated (the entire model), not just the targeted hypothesis it is supposed to test (such as a
null hypothesis). Furthermore, these assumptions include far more than what are tradi-
tionally presented as modeling or probability assumptions – they include assumptions
about the conduct of the analysis, for example that intermediate analysis results were
not used to determine which analyses would be presented.

Now it is true that the smaller the p-value, the more unusual the data would be if
every single assumption were correct; but a very small p-value does not tell us which
assumption is incorrect. For example, the p-value may be very small because the tar-
geted hypothesis is false; but it may instead (or in addition) be very small because the
study protocols were violated, or because it was selected for presentation based on its
small size. Conversely, a large p-value indicates only that the data are not unusual un-
der the model, but does not imply that the model or any aspect of it (such as the targeted
hypothesis) is correct; it may instead (or in addition) be large because (again) the study
protocols were violated, or because it was selected for presentation based on its large
size.

The general definition of a p-value may help one to understand why statistical tests
tell us much less than what many think they do: Not only does a p-value not tell us
whether the hypothesis targeted for testing is true or not; it says nothing specifically
related to that hypothesis unless we can be completely assured that every other as-
sumption used for its computation is correct – an assurance that is lacking in far too
many studies.

Upon reflection, most CA analysts would agree that Pc, as computed in practice, is conditioned
on imperfect observations and assumed models of the orbit; for example, it does not tell us anything
about the quality of the space weather data used in our models and hence may fall quite short of
fully describing the total probability of collision.

Another way to think of this is the following. The only way uncertainty enters into the usual CA
process is via errors in the tracking data, and the a priori uncertainty assumed for the two space
objects’ orbits, including parameters related to the orbit fits such ballistic coefficients, atmospheric
density, etc. If one were to conduct a Monte Carlo simulation of a conjunction, each trial would
make random draws on the tracking errors and the initial orbit conditions. One could then compute
the relative frequency across the ensemble of trials for which a collision occurred as a result of
the expected variation across the random numbers drawn. The value of Pc that the CA process
computes is simply an analytic computation that the Monte Carlo relative frequency will approach
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“in the long run” as the number of trials increases. But in the real world, there are many other
sources of variation, so that if we could repeat the actual conjunction over and over again, then “in
the long run” we would see a greater variability in the results.

Greenland, et al. go on to list 25 “misconceptions” regarding p-values, confidence intervals, and
statistical power that arise from an imprecise understanding of this definition. While we find many
of these to be overly dogmatic and/or repetitive, we list those few of them that appear most relevant
to CA here, modified as above for the CA context, and encourage the reader to consult the reference
for explanations.

Misconception 1 The p-value [Pc] is the probability that the test hypothesis [the space objects will
collide] is true; for example, if a test of the null hypothesis [that the objects will collide] gave
[Pc] = 0.01, the null hypothesis [a collision] has only a 1% chance of being true; if instead it
gave [Pc] = 0.40, the null hypothesis [a collision] has a 40% chance of being true.

Misconception 2 The p-value [Pc] for the null hypothesis [that the objects will collide] is the prob-
ability that chance alone produced the observed association; for example, if the p-value [Pc]
for the null hypothesis is 0.08, there is an 8% probability that chance alone produced the
association.

Misconception 3 A significant test result (p ≤ 0.05) [Pc ≤ 1×10−4] means that the test hypothesis
[a collision] is false or should be rejected.

Misconception 4 A nonsignificant test result (p > 0.05) [Pc ≥ 1 × 10−4] means that the test
hypothesis [a collision] is true or should be accepted.

Misconception 9 The p-value is the chance of our data occurring if the test hypothesis [a collision]
is true; for example, p = 0.05 [Pc = 1 × 10−4] means that the observed association [of
tracking data with a predicted collision] would occur only 5% [0.01%] of the time under the
test hypothesis [a collision will occur].

Misconception 10 If you reject the test hypothesis because (p ≤ 0.05) [Pc ≤ 1 × 10−4] , the
chance you are in error (the chance your “significant finding” is a false positive) [the chance
of a missed detection of a collision, or Type I error] is 5% [0.01%].

Misconception 19 The specific 95% confidence interval presented by a study has a 95% chance of
containing the true effect size.

Misconception 20 An effect size outside the 95% confidence interval has been refuted (or ex-
cluded) by the data.

Misconception 21 If two confidence intervals overlap, the difference between two estimates or
studies is not significant.

Misconception 22 An observed 95% confidence interval predicts that 95% of the estimates from
future studies will fall inside the observed interval.

SUGGESTIONS

To address some of the concerns that motivated the publication of Reference 1, the ASA offered
some recommendations:
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In view of the prevalent misuses of and misconceptions concerning p-values, some
statisticians prefer to supplement or even replace p-values with other approaches. These
include methods that emphasize estimation over testing, such as confidence, credibility,
or prediction intervals; Bayesian methods; alternative measures of evidence, such as
likelihood ratios or Bayes Factors; and other approaches such as decision-theoretic
modeling and false discovery rates. All these measures and approaches rely on further
assumptions, but they may more directly address the size of an effect (and its associated
uncertainty) or whether the hypothesis is correct.

A number of the commentaries accompanying the publication of Reference 1 offer more specific
guidance, and we find Greenland, et al.2 to be especially cogent in this regard. For example,
Reference 2 points out that “. . . many authors agree that confidence intervals are superior to p-values
because they allow one to shift focus away from the null hypothesis, toward the full range of effect
sizes compatible with the data – a shift recommended by many authors and a growing number of
journals.” However, they also issue a “. . . caution that confidence intervals provide only a best-case
measure of the uncertainty or ambiguity left by the data, insofar as they depend on an uncertain
statistical model.”

While a great deal of research in the CA field has focused on model improvement, such as im-
proved density estimation, enhanced covariance realism, relaxation of simplifying assumptions such
as linear relative motion and Gaussian distributions, etc.[need some references here], much of this
work is only slowly migrating to operational usage. Some work has also been done to utilize a
likelihood ratio in CA analysis using Bayesian methods,3 but the availability in practice of reliable
information concerning the underlying a priori statistics on the miss distance has proved challeng-
ing except in somewhat limited contexts.
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By contrast, it would be relatively easy to modify current CA practice to compute confidence
intervals (CI) by merely varying the combined hard-body radius from a lower limit that captures
α/2 of the probability mass to an upper limit of 1 − α/2 of the mass. Figure 1 shows an example
of such a calculation, for α = 1 × 10−3. The upper subplot shows the conjunction plane, which
is normal to the relative velocity at closest approach a solid black disk black at the center encloses
the combined hard-body radius (HBR) of the primary and secondary objects. The colored elliptical
contours are centered at the nominal miss distance, and indicate the probability masses in units of
standard deviation, σ, specified by the legend. To compute CI, we increased the HBR to the thresh-
olds indicated by the dashed/solid line boundaries. The lower subplot illustrates the cumulative
distribution function (CDF) for the miss distance, with the miss distances associated with the HBR,
lower CI (CIlo, upper CI (CIhi), and the nominal (Nom) all noted. By giving decision-makers both
a Pc value and a confidence interval, CA analysts provide them with a measure of the precision of
the estimates that a single number like Pc can never convey. However, confidence intervals are no
panacea for issues with covariance realism or prediction modeling errors.

Any discussion of p-values would not be complete without mention of the concept of statistical
power. The power of a hypothesis test is the probability of correctly rejecting the null hypothesis.
In the CA context, it is the probability of dismissing the conjunction when the miss distance truly is
greater than the combined HBR. The complement of the power is the probability of a Type II error
(false alarm), that is, deciding to perform risk mitigation when it was not required. In the CA con-
text, this may occur when Pc exceeds an action threshold because the relative position covariance
is large in comparison to the relative position vector, as often occurs early in the CA process. As
has been discussed in Reference 4, when the true outcome of a CA will be a safe miss, it will often
be the case that as the time until closest approach decreases, Pc will reach a maximum and then
decline. In this case, the same Pc values may occur on either side of the maximum, but a decision
procedure based on the earlier value would have less statistical power than a decision procedure that
uses the later value. Thus making a decision solely based on Pc, without regard to the size of the
covariance and the time remaining until close approach, is more likely to result in a Type II error
(false alarm). A difficulty with statistical power is that it can be difficult to quantitatively estimate,
since this requires making assumptions about the likelihood of the alternative hypothesis. Nonethe-
less, in the CA context, analysts can increase the power of the CA hypothesis test by waiting as long
as possible before the time of closest approach to make a decision, since both the increased data
availability and decreased propagation time would be expected to reduce the relative covariance∗. It
is however important that analysts apply some degree of rigor to this process; otherwise the tempta-
tion to “p-hack” may intrude on the analysis. In particular, decisions concerning how long to wait,
how small the covariance should be, etc. are tantamount to decisions concerning the design of a
statistical experiment and must be decided in advance of conducting the experiment, i.e. in advance
of analyzing a specific CA, in order to avoid biasing the results. Here again, use of confidence
intervals on the miss distance may provide useful insight, since a confidence interval that is large in
comparison to the estimated miss distance is a good indicator of low statistical power.

Another area in which the CA process might benefit from insight derived from a hypothesis
testing perspective would be the application of additional rigor to the determination of thresholds
for decisions based on Pc. In current practice, Pc thresholds sometimes appear to be based on the
assumption that they correspond to limits on Type I error (missed detection) rates. However, to

∗The degree to which it is possible to wait is often highly constrained by the capabilities of the spacecraft, ground
systems, and Flight Operations Team to safely plan and execute a CA risk mitigation maneuver.
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rigorously choose a decision threshold so that it guarantees a specified Type I error rate, an analyst
needs to know the properties of the underlying probability distribution from which she draws her
samples, as in the examples in the appendix. This is the same issue that has limited the acceptance
of CA based on likelihood ratio methods. More work to characterize such prior densities, perhaps
based on debris flux analysis, as was done in Reference 5, would seem to be in order.

CONCLUSION

This paper has argued that the CA community uses Pc in a manner that approximates a classi-
cal statistical hypothesis test. To wit, the community effectively uses Pc as it were a p-value, and
compares it to a significance level which is sometimes thought to limit the Type I error (missed
detection) rate. As such, the CA process is susceptible to the same kinds of critiques that the overall
scientific community has been incurring since the publication of Reference 6 and similar articles
over the past decade. To assist the CA community in recognizing the potential applicability of the
pitfalls that have affected the wider community, this paper has cast the ASA’s best practices for use
of p-values and related hypothesis testing constructs into a form that should be more familiar to
CA practitioners. This paper has further offered specific suggestions for improving the existing CA
process, derived from recognition of correspondences with statistical hypothesis testing methods.
These suggestions include more rigorously constraining the CA process in advance of analyzing
actual CAs, using confidence intervals on the miss distance as a supplement to Pc in order to more
clearly communicate the power of the decision process, and performing more effort into charac-
terizing the underlying densities from which miss vectors for various types of conjunctions may
presumed to have been drawn.

APPENDIX: SIGNIFICANCE TESTING AND CONFIDENCE INTERVALS

This appendix provides two examples of hypothesis tests involving p-values and confidence in-
tervals that compare and contrast a classic textbook example of a test on the mean of a normal
distribution with a test that approximates a CA decision. At the end of each example is a figure il-
lustrating the concepts each discusses; readers may find it helpful to consult the figures periodically
while pondering each example.

Simple Example

The following simple example has been adapted from Chapter 8 of Reference 7. Suppose that an
analyst has to decide whether to accept the null hypothesis that the mean of a normally-distributed
random variable, with known standard deviation of σ, is less than some specified threshold, µo. The
analyst takes the view that µ is not a random variable; it simply has a value that is unknown to him.
Denoting the set for which µ ≤ µo as Ωo, we can write the null hypothesis as Ho : µ ∈ Ωo. He
will analyze a random sample of n observations, denoted by the set X = {X1, X2, . . . , Xn}, drawn
from the aforementioned distribution. The set of all possible observations may be divided into two
disjoint subsets; the subset for which the analyst will reject the null hypothesis is the known as
the critical region, which we denote as C. For each possible value of the true but unknown mean,
µ, one can specify the probability that the analyst’s test procedure will lead him to reject the null
hypothesis. This probability, expressed as a function of the unknown mean, π(µ), is called the
power function of the procedure, and it is given by

π(µ) = Pr (X ∈ C|µ) (1)

11



The ideal power function would be a step function for which π(µ) = 0 for all µ ∈ Ωo, and π(µ) = 1
otherwise.

If the analyst rejects the null hypothesis when the true mean is less than µo, the analyst considers
this to be a missed detection. The analyst may specify an upper bound, called the level of signifi-
cance, αo, on the probability of such an error, and only consider procedures for which π(µ) ≤ αo.
A related concept is the size of the procedure, defined to be the least upper bound on the power
among all values of µ ∈ Ωo:

α = sup
µ∈Ωo

π(µ) (2)

Thus, to achieve a specified level of significance, the analyst would choose procedures of sufficient
size that α ≤ αo.

Let X̄n = 1
n

∑n
i=1Xi denote the estimator of the mean based on n sample observations; the

associated sample standard deviation is σ/
√
n. Note that X̄n is a random variable, while for a

particular set of observed samples, {X1 = x1, X2 = x2, . . . , Xn = xn}, the realized estimate of
the mean, x̄n = 1

n

∑n
i=1 xi, is just a real number. Chapter 8 of Reference 7 shows that there exists

some value c such that if the analyst rejects Ho when x̄n ≥ c, then the power of the test is as large
as possible, subject to the constraint that π(µ) ≤ αo. The level of significance for this procedure is
then

αo = Pr
(
X̄n ≥ c|µ = µo

)
= 1−GX̄n(c |µo, σ/

√
n) (3)

where GX(x |µ, σ) denotes the cumulative Gaussian distribution with mean µ and standard de-
viation σ evaluated at some value x. It will be convenient to normalize the distribution, so let
Z = X−µ

σ . Now let ζαo denote the value of the inverse standard normal distribution such that
Pr(Z ≥ ζαo) = αo. Then,

αo = Pr

(
Z ≥ c− µo

σ/
√
n

)
(4)

Thus, ζαo =
√
n
σ (c− µo) implies that c = µo + ζαo

σ√
n

. In this context, the p-value associated with
a particular estimate x̄n is given by the probability that an estimate equal to or more extreme than
the observed sample mean could have occurred,

p = Pr
(
X̄n ≥ x̄n|µ = µo

)
= 1−GX̄n(x̄n |µo, σ/

√
n) = Pr

(
Z ≥ x̄n − µo

σ/
√
n

)
(5)

so that x̄n ≥ c is equivalent to p ≥ αo, and either of these conditions equivalently leads to rejection
of the null hypothesis that µ ≤ µo at the αo level of significance.

The power function of this test is the probability of rejectingHo as a function of a given µ:

π(µ) = Pr

(
X̄n − µ
σ/
√
n
≥ ζαo +

µo − µ
σ/
√
n

)
(6)

For this example, the test is specified by the assumed standard deviation, σ, the threshold µo, and
the significance level, αo. With these parameters specified, the power function of the test depends
only on the number of observations, although the actual power of the test will depend on the actual
value of µ, which is unknown. But it is clear that as n increases for fixed σ, or as σ decreases for
fixed n, c approaches µo from above; thus, the distance between c and µo gives some indication of
the power the test. If the analyst were to exclusively report the p-value, both he and his audience
would be missing key insight into the power of the test.
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As either an alternative or a supplement to the hypothesis test just described, the analyst may
wish to study probabilities of the form

γ = Pr (ω(X1, X2, . . . , Xn) ≤ µ) (7)

That is, if the analyst were to conduct a large number of studies, and compute a different value of
ω(X1, X2, . . . , Xn) from the realized values {X1 = x1, X2 = x2, . . . , Xn = xn} from each study,
the portion of those studies for which ω(X1, X2, . . . , Xn) ≤ µ would be γ. For example, rather
than forming a hypothesis about a threshold for µ that is fixed a priori, the analyst may wish to
choose a threshold that is based on the estimated sample mean. Because the sample mean has a
Gaussian distribution when the variance is known, and since E(X̄n) = µ, it is common to choose
the threshold based on a value from the inverse normal distribution corresponding to the desired
probability, in a manner similar to choosing the critical value for the significance test:

γ = 1− α = Pr

(
X̄n − ζα

σ√
n
≤ µ

)
(8)

Once the analyst computes the estimate, x̄n, the inequality

x̄n − ζα
σ√
n
≤ µ (9)

is no longer a statement of probability (recall that µ is not a random variable, just a fixed but
unknown quantity), so in this context it is customary to refer to 1−α as a level of confidence rather
than a probability, and the interval [x̄n − ζα σ√

n
,∞) as a confidence interval ∗. The analyst might

report, if he takes α = 0.05, that he has 95% confidence that the mean is greater than or equal to
x̄n − ζα σ√

n
.

Note that µo /∈ [x̄n− ζαo σ√
n
,∞) will incur if the analyst has rejected the null hypothesis accord-

ing to the significance testing procedure, since p ≥ αo is equivalent to µo ≤ x̄n − ζαo σ√
n

. Thus,
as Chapter 8 of Reference 7 discusses in greater detail, a confidence interval corresponds to a con-
tinuum of significance tests, with each test corresponding to a value of µo ∈ [x̄n − ζαo σ√

n
,∞), all

of which have size α. Although his conclusions could be the same with either approach, by using a
confidence interval the analyst and his audience are forced to confront the precision of the estimate
in a manner that they could not have if the analyst had reported only a p-value without information
concerning the power the test.

Figure 2 illustrates the concepts this example has discussed. Realized values of the sample mean
to the right of the yellow line would provide evidence at the αo level of significance for rejecting
the null hypothesis that µ ≤ µo. The critical value of the test is the argument of the probability
contained under the heavy red line and to the right of the intersection of the yellow and heavy red
lines. The p-value corresponding to a realized sample mean x̄n is the probability contained under
the heavy red line and to the right of the intersection of the green and heavy red lines, which for the
value shown, would indicate rejection of the null. The cyan line indicates the one-sided confidence
interval associated with x̄n, whose confidence level is set a posteriori to correspond with a lower
limit equal to µo, as will be discussed at the end of this appendix.

∗The analyst may similarly specify an upper bound, µ ≤ x̄n + ζα
σ√
n

. The combination of the upper and lower bound
produces a two-sided confidence interval, for which one would typically allocate α/2 confidence to each side.
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Figure 2. Illustration of p-values and confidence intervals for the hypothesis that
µ ≤ µo for observations drawn from a Gaussian distribution with known variance.

Generalization to a Simplified CA Example

Suppose that a CA analyst has to decide whether to accept the null hypothesis that the true miss
distance between two space objects, ρ, is less than some value, ρo, which corresponds to the com-
bined hard-body radius of the two objects. She will analyze a random sequence of observations
of the relative position vector, X = { ~X1, ~X2, . . . , ~Xn}, drawn from a Gaussian distribution with
known covariances P1, P2, . . . , Pn and unknown mean ~µ, corresponding to the true miss vector,
which she derives from predictions of the states of the two objects from the times t1, t2, . . . , tn to
the time of closest approach. Note also that ρ = ‖~µ‖, and hence there is some mean vector ~µo such
that ρo = ‖~µo‖.

She assumes that for each observation, the cumulative probability that the relative position vector
predicted from time ti is within a region defined by a set Dr, which defines a circular disk centered
on the origin such as that depicted in the upper subplot of Figure 1, where the miss distance is less
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than or equal to some specified value r, is given by

Pr (Ri ≤ r) = FRi(r | ~µ, Pi) (10)

=
1√
|2πPi|

∫
~X∈Dr

e−
1
2

( ~X−~µ)′P−1
i ( ~X−~µ) d2 ~X (11)

=
1√

8πσib

∫ r

−r
exp

(
−(µb +Xb)

2

2σ2
ib

)

×

erf

µa +
√
r2 −X2

b√
2σia

− erf

µa −
√
r2 −X2

b√
2σia

dXb

(12)

where (12) follows from References 8 and 9. In (12), a and b denote the major and minor axes of
the ellipse associated with the covariance Pi, σ2

ia and σ2
ib are the associated eigenvalues of Pi, µa

and µb are the coordinates of ~µ along the corresponding axes, and the variable of integration, Xb, is
the coordinate of the vector of integration ~X , in (11), along the minor axis.

The subset of all possible observations for which the analyst will reject the null hypothesis is the
critical region, C. For each possible value of the miss distance, one can specify the probability that
the analyst’s test procedure will lead her to reject the null hypothesis. The power function for this
procedure, expressed as a function of the unknown miss distance, is given by

π(ρ) = Pr (X ∈ C | ρ) (13)

The analyst specifies a level of significance, αo, on the probability of a Type I error (missed detec-
tion), and only considers procedures for which the size of the procedure,

α = sup
ρ≤ρo

π(ρ) (14)

is sufficient that α ≤ αo.

Let ~̂Xn denote the estimator of ~µ based the observations up to tn, with covariance Pn. For a
particular set of observed samples, { ~X1 = ~x1, ~X2 = ~x2, . . . , ~Xn = ~xn}, the realized estimate is

~̂xn. Letting R̂n = ‖ ~̂Xn‖, then per the example above, if there exists some value c such that if the
analyst rejectsHo when r̂n = ‖~̂xn‖ ≥ c, then the power of the test is as large as possible, subject to
the constraint that π(ρ) ≤ αo. The level of significance for this procedure is then

αo = Pr
(
R̂n ≥ c | ρ = ρo

)
(15)

Unlike for the previous example, it is not immediately obvious how to choose c to maximize the
power of the test, subject to α ≤ αo, since ρo = ‖~µo‖ can correspond to any point on the boundary
of the combined hard body disk. Consulting Figure 1, it becomes clear that choosing ~µo to point in
the direction of the major axis of the error ellipse corresponding to Pn gives the correct value∗. Any
other vector would violate the constraint α ≤ αo. Denoting this vector as ρo~u an , where ~u an is a unit
vector along the major axis of Pn, the level of significance is

αo = 1− FRn(c | ρo~u an , Pn) (16)
∗Recall that in this simplified example, Pn is known in advance of collecting any random observations.
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and the critical value is
c = rαo = F−1

Rn(1−αo|ρo~u an , Pn) (17)

The p-value corresponding to a particular estimate is then the probability that an estimate equal to
or more extreme than the observed value could have occurred,

p = Pr
(
R̂n ≥ r̂n | ρ = ρo

)
= 1− FRn(r̂n | ρo~u an , Pn) (18)

so that r̂n ≥ c is equivalent to p ≥ αo, and either of these conditions equivalently leads to rejection
of the null hypothesis that ρ ≤ ρo at the αo level of significance. For the scenario Figure 1 depicts,
p = 47%, indicating that the null hypothesis could not be rejected at a common level of significance,
such as αo = 5%.

The power function of this test is the probability of rejectingHo as a function of ρ:

π(ρ) = Pr
(
R̂n ≥ c | ρ

)
= 1− FRn(c | ρ ~u an , Pn) (19)

For this example, the test is specified by the covariance, Pn, the threshold ρo, and the significance
level, αo. As the norm of Pn decreases, c approaches ρo from above; thus, the distance between
c and ρo gives some indication of the power the test. If the analyst were to exclusively report the
p-value, both she and her audience would be missing key insight into the power of the test. For the
scenario Figure 1 depicts, the power associated with the particular estimated miss distance the figure
shows is π(r̂n) = 8.6%, which is considerably lower than the 80%− 90% typically associated with
reliable hypothesis testing results.

As either an alternative or a supplement to the hypothesis test just described, the analyst may
wish to study probabilities of the form

γ = Pr
(
~µo ∈ ω( ~X1, ~X2, . . . , ~Xn)

)
(20)

A common choice for ω( ~X1, ~X2, . . . , ~Xn) might be an error ellipsoid derived from Pn, correspond-
ing to a probability of 1 − α that ~µo is contained within it. Once the analyst has computed the
estimate ~̂xn, she can center the error ellipsoid on ~̂xn to define a confidence region. Another op-
tion would be to define a confidence interval for the miss distance, without regard for direction, as
Figure 1 depicts, such as

γ = 1− α = Pr
(
R̂n − rα ≤ ρ

)
(21)

Once the analyst computes the estimate, r̂n, the inequality

r̂n − rα ≤ ρ (22)

defines the 1−α confidence interval [r̂n− rα,∞). The analyst might report, if hse takes α = 0.05,
that she has 95% confidence that the true miss distance is greater than or equal to r̂n − rα.

Note that ρo /∈ [r̂n − c,∞) will incur if the analyst has rejected the null hypothesis according
to the significance testing procedure, since p ≥ αo is equivalent to ρo ≤ r̂n − c. Although her
conclusions regarding the risk of the conjunction would be the same with either approach, by using
a confidence interval the analyst and her audience are forced to confront the precision of the estimate
in a manner that they could not have if the analyst had reported only a p-value without information
concerning the power the test.
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Figure 3. Illustration of p-values and confidence intervals for the hypothesis that
ρ ≤ ρo for miss vector observations drawn from a Gaussian distribution with known
covariance.

Figure 3 illustrates the concepts this example has discussed. Realized values of the estimated
miss distance to the right of the yellow line would provide evidence at the αo level of significance
for rejecting the null hypothesis that ρ ≤ ρo. The critical value of the test is the argument of the
probability contained under the heavy red line and to the right of the intersection of the yellow and
heavy red lines. The p-value corresponding to a realized estimate r̂n is the probability contained
under the heavy red line and to the right of the intersection of the green and heavy red lines, which
for the value shown, would indicate rejection of the null. The cyan line indicates the one-sided
confidence interval associated with r̂n, whose confidence level is set a posteriori to correspond
with a lower limit equal to ρo, indicating a confidence of 1 − Pc that the secondary object will not
penetrate the combined hard-body disk surrounding the primary, as will be discussed below.

Figure 4 revisits the particular result Figure 1 depicts, adding the CDF as well as the probability
density function (PDF) associated with the null hypothesis, which the figure indicates with dashed
lines, which are blue for the CDF and red for the PDF. This PDF, along with the PDF associated
with the estimate, shown as a solid red curve, correspond to two of the infinity of PDFs that Figure 3
depicts. The dashed vertical line at a miss distance of approximate 0.55 is the value co for which the
null hypothesis could be rejected at a 5% level of significance, if the estimated miss distance had

17



been equal to or greater than co. The proximity of the dashed and solid blue curves is the reason
the p-value is quite large, and the large extent of the curves in relation to the difference between the
nominal estimate and co is the reason the power is low.
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Figure 4. Update to Figure 1, with CDF and PDF associated with null hypothesis
overlaid as dashed lines.

Relations among Pc, p-values, and Confidence Intervals

In operational practice, analysts compute the collision probability by taking the mean miss vector
to be some nominal value, which results from the latest estimate of the predicted relative position
vector, ~̂xn. As the previous examples have shown, this differs from the computation of a p-value,
in which one would assume a mean vector that corresponds to the null hypothesis of an unsafe
conjunction, such as ~µ = ρo ~u

a
n . Instead, the operational CA practice more closely resembles the

computation of a confidence interval, in being based on the latest realized estimate. But as the
examples have shown, an interval based on a realized estimate is not a statement of probability,
which is why statisticians insist on the term confidence value for such intervals. However, rather
than basing the confidence interval on a confidence value of γ = 1 − α that is fixed a priori, the
CA practice is to fix the endpoint of the confidence limit at the combined hard-body radius, ρo, and
let α denote the resulting collision probability. Thus, for a 1 − α confidence interval derived from
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Pr(R̂n − ρo ≤ ρ), the “Pc confidence value” would be

Pc = Pr
(
R̂n ≤ ρo

)
= FRn(ρo | ~µ = ~̂xn, Pn) (23)

=
1√
|2πPn|

∫
~X∈Dρo

e−
1
2

( ~X−~̂xn)′P−1
n ( ~X−~̂xn) d2 ~X (24)

=
1√

8πσib

∫ ρo

−ρo
exp

(
−(µb +Xb)

2

2σ2
ib

)

×

erf

µa +
√
ρ2
o −X2

b√
2σia

− erf

µa −
√
ρ2
o −X2

b√
2σia

dXb

(25)

So, given a realized estimate for the miss vector, an analyst could state that she had 1 − Pc con-
fidence that the true miss distance is greater than the combined hard-body radius, and as with the
previous examples, there exists an equivalent significance test in which Pc functions in similar, but
not identical manner, as a p-value.
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