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Objective:
• Characterize processing-structure-property relationships governing freeze 

casting of Li1.5Al0.5Ge1.5(PO4)3 NaSICON solid electrolyte.
• Evaluate production of thin solid-state electrolyte separators with high 

porosity and interfacial area for improved active material loading.

Motivation:
• Enable next generation hybrid-electric and all-electric

aerospace propulsion systems for green aviation, seek 
to reduce emissions and achieve higher efficiency.

• Novel solutions are needed to increase energy density 
and achieve systems level weight savings in inherently 
safe configurations.

Ice Templating Kinetics
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Background

Freeze Casting Overview

Microstructural Control

Thermal Imaging

https://www.nasa.gov/centers/armstrong/Features/leaptech.html
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All-solid-state batteries
• Prevent Li dendrite growth, improve safety.
• Reduce parasitic inactive components, improve Ah/g.
Multifunctional Energy Storage
• Figure of Merit – systems level weight savings.
• Active battery materials in load bearing paths.
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Future Work

•Multifunctional performance characterization
• Electrochemical impedance spectroscopy
• Ring-on-ring biaxial flexure fracture testing
• Cycling performance

Conclusions:
• Slurry composition and casting parameters were tuned to provide 

desirable microstructural traits: high porosity and vertical directionality.

• Relationships between macroscopic experimental observations and local 
microstructural properties were explored.

•Direct observation of macroscopic thermal environment was achieved 
through infrared imaging.

• ABC: Increased solvent volume, resulted in increase in templated porosity.
• DEF: Increased plasticizer (PAG) content due to cracking of tapes during 

sublimation. Resulted in decreased porosity. High plasticizer content 
stabilized transformation front.

• GH: Changed plasticizer (PEG), resolved residual cracking. Templated 
porosity recovered, ethanol ΔT modified.

• Changes in slurry composition yielded significant changes to microstructural 
characteristics. 

• Porosity and vertical directionality increased.

Figure 5: Casting table and temperature profile.
Figure 6: Freeze casting table displaying mylar carrier and granite casting surface.
Figure 7: Freeze dryer for sublimation of ice from green tapes.

Figure 4: Inspiration from freeze cast 
functional ceramics implemented as SOFC 
electrodes, developed at NASA GRC. 

Figure 8: Four processing steps:
1) Aqueous slurry preparation
2) Freeze tape casting

3) Sublimation
4) Burnout and Sintering

Figure 1: Leading Edge Asynchronous Propeller Tech. 

Figure 3: State of the art structural battery: 
carbon fiber anode, polymer electrolyte coating, 
cathode containing matrixFigure 2: Lithium-ion battery schematic.

Figure 10: Macroscopic temperature gradients.

Figure 9: Kinetic zones for desired microstructures.

Figure 11: Freeze cast LAGP microstructures, slurry compositions, and casting parameters.

Figure 13: Lateral temperature profiles.

Infrared imaging enabled direct observation 
of thermal environment.

• ΔT1lateral thermal gradient 
• ΔT2 vertical thermal gradient 
• ΔH exothermic solidification 
• ΔTice heat removal after transformation
• Nucleation versus growth preference
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Figure 15: Observed improvements to directionality by preheating slurry.

Increased Solvent

Increased Plasticizer

New Plasticizer / Ethanol Additive

Figure 14: Undesirable nucleation preference.

Figure 12: Top down view of infrared thermal imaging. 

Component Composition

Constants Solids LAGP
Dispersant Darvan C-N
Surfactant Dynol 604
Binder B-1000/B-1022

Methyl Cellulose
Polypropylene Carbonate

Variables Plasticizer PEG
Glycerin

Solvent H2O
H2O + EthOH
H2O + IPA

Thickener XG

Casting Carrier Velocity
Variables Carrier Composition

Table Temperature
Slurry Temperature
Freezing Temperature
Doctor Blade Height
Casting Angle
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