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* Prevent Li dendrite growth, improve safety.

* Reduce parasitic inactive components, improve Ah/g.
Multifunctional Energy Storage
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* Active battery materials in load bearing paths.
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Figure 7: Freeze dryer for sublimation of ice from green tapes. + Porosity and vertical directionality increased
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* Direct observation of macroscopic thermal environment was achieved
through infrared imaging.

Figure 5: Casting table and temperature profile.
Figure 6: Freeze casting table displaying mylar carrier and granite casting surface.
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