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Vision and Goals

HRP has charged the Cross-cutting
Computational Modeling Project (CCMP) with
identifying areas in which computational
modeling can support HRP success by:

» Assessing poorly understood risks from a
broader prospective to aid risk reduction.

» |dentifying how computational modeling can
Improve or accelerate the development of
products designed to reduce risk.

» Faclilitating the integration of individual risk
reduction efforts to enhance overall
effectiveness and to reduce costs.

Specific Aims
The specific aims of the CCMP are:
 |dentify areas where modeling and

analysis can facilitate program integration
and enhance risk reduction.

* Perform data mining, create tools and
develop analyses for integrated risk
guantification, assessment and reduction.

* Facilitate acceptance testing, credibility
assessment, maturation and transition of
software designed for use In critical
applications.
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Our computational modeling approach includes the Integration of data, physiological models, and analytical
tools into a computational architecture for the performance of analyses and predictions

Vehicle/Habitat Design Support

Assist with the credibility assessment of the SOLV Tool, a Constraint-

driven, optimization-based computational model developed by HRP

Human Factors and Behavioral Health Group.

* The credibility assessment efforts include:

* |Improve input data pedigree

 ldentify referent information for validation
» Faclilitate identification of user credibility requirements

« Exercise operational volume
* Medical Station Operations
* Critical Tasks

Provide operational volume data for habitat design

« Tasks with large uncertainty in their operational volume
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Computational Modeling Capabilities and Example Applications
Probabilistic Risk Assessment

Integrated Medical Model
(IMM)
The IMM tool quantifies
spaceflight medical risk using
Probabilistic Risk Assessment
techniques in a manner
similar to operational risk
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CONSEQUENCES
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Health and Safety.

Lumbar Spine Hip Wrist IMM Injury Probability
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Head injury and for hip, lumbar spine
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=[] . . = were obtained through
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approach was needed because
these injuries have not
occurred to date and therefore
Resource  Probability of LOCL hjstorical information about
Optimization and Evacuation injury rate was not available

Medical System Requirements Definition

Development of the Medical Extensible Dynamic Probabilistic Risk Assessment (MEDPRAT) tool for
prediction of medical event occurrences
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Example medical event simulation flow:
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Example mission task simulation flow:
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Biomechanical Models

DAP Exercise Device
Biomechanical Models

These models informed MPCYV vehicle
design by characterizing interface
loads imparted to the MPCV resulting
from exercise and by determining
whether or not the exercise operation
volume allocation would
accommodate exercising crew
members.

These models also informed exercise
| | device requirements by identifying the
N e o need for an adjustable footplate and
the need for a cable exit that would
allow exercise in two different
orientations

DAP Exercise Device
Biomechanical Models

The results of the
computational model
analysis provided
evidence that informed
the requirement for a
harness accessory to
accompany the exercise
device, so crew members
can perform both squat
and deadlift exercises.

Support of the Spaceflight Associated
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NASA Standard 70094 — Credibility of Models and Simulation

Concept Concept
implemented represents real
world system

1 \
Data e oy Input
Pedigree Verification Validation Pedigree

V.,

N
Results Results : ME&S
LUncertainty ][Robustness ][M&S IS IManagement)}

-

How model has
changed

How has the

Development
cycle, reviews,
& Config. Mgt

Conclusion

Computational models and their supporting analysis tools have the proven potential to integrate
analyses of risk factors to enhance mission planning and preparation capabilities and to inform
spacecraft design and countermeasure development. Appropriately applied, computational
models may allow intelligent, unbiased physiological parameter assessment to enable
hypothesis testing and model based design of experiments.
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