

# Development of an Optical Slice for an RF and Optical Software Defined Radio

Jennifer M. Nappier and Nicholas C. Lantz NASA Glenn Research Center



# INTRODUCTION

In the future, NASA missions will need a high data return communications link, combined with a more reliable link for TT&C. Integration of these multi-band systems will be necessary in order to save mass and power, and also optimize re-usability across different NASA missions. One part of the communication system which can be integrated is the software defined radio.

## OPTICAL SLICE IMPLEMENTATION

The optical slice was implemented on the Harris AppSTAR<sup>™</sup> platform. It includes an optical mezzanine card and the CCSDS Optical Downlink High Photon Efficiency Waveform.

SDR Backplane Optical Transmit Slice

### RESULTS

**Optical Mezzanine Card Extinction Ratio** 

| The extinction ratio for | 0.5          |
|--------------------------|--------------|
| different modulation     | 0.4          |
| orders and slot widths   | otential (V) |

# **BACKGROUND INFORMATION**

#### **Space Telecommunications Radio System**

The Space Telecommunications Radio System (STRS)<sup>1</sup> is an open architecture for NASA software defined radios. It provides a common framework which abstracts the application software, including the

waveform, from the radio

#### platform.



# Fig. 1. Notional STRS platform block diagram.



Fig. 3. NASA implementation of the optical slice utilizing the Harris AppSTAR<sup>™</sup> platform.

#### **Optical Mezzanine Card**



was calculated from a

1/16 duty cycle

waveform.



#### Table 2. Extinction ratio results for slot widths from 0.25 to 8 ns.

| Slot<br>Width<br>(ns) | PPM-4<br>(dB) | PPM-8<br>(dB) | PPM-16<br>(dB) | PPM-32<br>(dB) | PPM-64<br>(dB) | PPM-128<br>(dB) | PPM-256<br>(dB) | PPM-512<br>(dB) |
|-----------------------|---------------|---------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| 8                     | 21            | 25            | 28             | 32             | 34             | 37              | 40              | 43              |
| 4                     | 21            | 24            | 28             | 31             | 34             | 37              | 40              | 43              |
| 2                     | 18            | 22            | 26             | 29             | 32             | 35              | 38              | 41              |
| 1                     | 17            | 21            | 25             | 28             | 31             | 34              | 37              | 40              |
| 0.5                   | 17            | 20            | 24             | 27             | 30             | 33              | 36              | 39              |
| 0.25                  | 8             | 12            | 15             | 18             | 21             | 25              | 28              | 31              |

#### **Optical Mezzanine Card Jitter Results**

The optical mezzanine card has a jitter of 5.4 ps.

#### **FPGA** Utilization

FPGA utilization metrics are given for the Virtex 6 FPGA and

the Virtex 7 FPGA. The metrics do not include the channel

#### **CCSDS Optical Communications Standards**

NASA is taking part in the development of Consultative Committee for Space Data Systems (CCSDS) standards for the channel coding, synchronization, and physical layer of optical communications, including a high photon efficiency standard for deep space.

# RF AND OPTICAL SDR ARCHITECTURE

A modular slice architecture is advantageous when integrating

RF and Optical in an SDR.



**Optical Waveform** Fig. 4. Optical mezzanine card architecture.

The optical waveform implements the CCSDS optical communications standard for high photon efficiency, which is based on the serially concatenated pulse position modulation.<sup>2</sup>

#### Table 1. Waveform module list with

reconfigurable parameters.

| Module Name                    | Reconfigurable Parameters    |                                     |  |  |
|--------------------------------|------------------------------|-------------------------------------|--|--|
| Data Generation                | Data Source: PRE             | 3S 2 <sup>23</sup> -1, Constant     |  |  |
|                                | Counting Up                  |                                     |  |  |
| Transfer Frame Synchronization | -                            |                                     |  |  |
| Marker                         |                              |                                     |  |  |
| Slicer                         | -                            |                                     |  |  |
| Randomizer                     | -                            |                                     |  |  |
| CRC-32 Attachment / 2 Bit      | -                            |                                     |  |  |
| Termination                    |                              |                                     |  |  |
| Convolutional Encoder          | Code Rate: 1/3, 1/2, 2/3     |                                     |  |  |
| Accumulator                    | -                            |                                     |  |  |
| PPM Symbol Mapper              | -                            |                                     |  |  |
| Channel Interleaver            | Number of Rows: N            | Note:                               |  |  |
|                                | Shift Register: B            | Reconfigurable at compile time only |  |  |
| Codeword Synchronization       | -                            |                                     |  |  |
| Marker                         |                              |                                     |  |  |
| Symbol Repeater                | Number of Symbol F<br>16, 32 | Repeats: 1, 2, 3, 4, 8              |  |  |
| Modulation Mapping and Guard   | M: 4, 8, 16, 32, 64, 12      | 28, 256                             |  |  |
| Time Insertion                 |                              |                                     |  |  |
| Slot Repeater and Wrapper      | Number of Slot Rep           | peats: 1, 2, 4, 8, 16               |  |  |
| Interface                      | 1024                         |                                     |  |  |

interleaver, as the implementation will vary depending on the

| 1331011. |            | Virtex 6 FPGA |             | Virtex 7 FPGA |             |  |
|----------|------------|---------------|-------------|---------------|-------------|--|
|          |            | Number        | Utilization | Number        | Utilization |  |
|          | Slice      | 5,192         | 1 %         | 6,043         | 1.5 %       |  |
|          | Registers  |               |             |               |             |  |
|          | Slice LUTs | 7,098         | 4 %         | 4,514         | 2.2 %       |  |
|          | Occupied   | 2,235         | 6 %         | 2,003         | 3.9 %       |  |
|          | Slices     |               |             |               |             |  |
|          | LUT FF     | 7,349         | -           | 6,631         | 3.3 %       |  |
|          | Pairs      |               |             |               |             |  |
|          | Used       |               |             |               |             |  |
|          | RAMB36     | 19            | 4 %         | 19            | 2.5 %       |  |
|          | RAMB18     | 9             | 1 %         | 9             | 0.6%        |  |

Table 3. FPGA utilization metrics without the channel interleaver.

## FUTURE DEVELOPMENT

The next steps in this project include development of the

optical communications high photon efficiency real-time

receiver system.



Fig. 2. Modular slice architecture showing common interfaces between the waveform processing card and the mezzanine card. A standardized hardware architecture would allow re-use of the waveform processing card and the flexibility to customize the SDR with a mission specific mezzanine card.  "Space Telecommunications Radio System (STRS) Architecture Standard Release 1.02.1" (2012).
Moison, B. and Hamkins, J., "Coded Modulation for the Deep-Space Optical Channel: Serially Concatenated Pulse Position Modulation," The Interplanetary Network Progress Report 42(161) (2005).

#### **SPIE Photonics West 2018**