

GENERAL BACKGROUND ON SHAPE MEMORY ALLOYS

Santo Padula, II High Temperature and Smart Alloys Branch Materials and Structures Division NASA Glenn Research Center

NASA GRC Shape Memory Alloy (SMA) Team

Glenn Research Center

- **Othmane Benafan**
- **Glen Bigelow**
- **Chris Dellacorte**
- **Malcolm Stanford**
- **Fransua Thomas**
- **Santo Padula II**
- **Darrell Gaydosh**
- **Anita Garg**
- **Timothy Halsmer**
- **Ron Noebe**

Branch Chief: Bob Carter

Shape Memory Alloys (SMAs): An Introduction

- ü **Metal alloys that have a "memory."**
- ü **These materials have the ability to remember and recover their original shapes against significant externally applied loads.**
- ü **SMAs exhibit a solid-to-solid, reversible phase transformation that can be induced by the application of force or temperature.**
- ü **NiTi most common alloy – highest work output/energy density.**

Basic Differences between Conventional Metals and Shape Memory Alloys (SMA)

Conventional Material Deformation

□ Require imposed forces/stresses only generate *ELASTIC* deformation.

Elastic deformations

 \checkmark Distort the material lattice through bond stretch.

ü Deformations are *REVERSIBLE*.

 \Box If imposed forces/stresses create deformations that can't be accommodated by *ELASTIC* distortion of lattice – *PLASTIC* deformation (bond breakage).

Shape Memory Alloys: An Introduction

- \square Don't accommodate deformations through elastic bond stretch.
- \Box SMAs exhibit a solid-to-solid, reversible phase transformation.
- **Q** Transformation capable of storing *over 30x* the deformation that can be done in an *elastic* bond stretch.

Simplified 2D

\Box How?

- **Heating** \checkmark Bain strain \Rightarrow (lattice deformation)
- \checkmark Lattice invariant shear \to (accommodation)
- ü *Inelastic* deformation (transient twinning) → *REVERSIBLE*

Courtesy of A. Garg

Mechanical Component Design Constructs

Shape Memory Alloys (SMAs) allow for > 10 times the strain to be accommodated in the component, allowing designs that could never be contemplated with conventional materials

Practical Example of Difference between Conventional Material and Shape Memory Alloys

The reversible, solid-state phase transformation that occurs in Shape Memory Alloys (SMAs) is capable of storing *over 30x* the deformation that can be done in a material required to accommodate the deformation solely through *elastic* bond stretch.

Different Modes of Operation When Using Shape Memory Alloys (SMA)

Alloy Chemistry Alters Temperature at Which Phase Transformation Happens

Examples of Shape Memory Alloys in Action

Examples of the Two Transformation Types

Mechanically Induced Transformation Thermally Induced Transformation

Courtesy of UCF

- § SMA actuators can generate motion in one dimension (wire form), two dimensions (bending of a bar) or even motion in a more complex three dimensions(springs, honeycombs, panels)
- Functionality: Tension (e.g., wires, springs), compression (e.g., rods, springs), bending (e.g., beams, plates), torsion (e.g., rods, tubes, and springs)

Work Being Conducted by Shape Memory Alloy (SMA) Team at GRC

Research Driven Approach to Product Development

- **WIDEN TEMPERATURE** range over which they can be used.
- Improving **WORK** capability.
- Create materials that have **BETTER STABILITY (REPEATABLE PERFORMANCE)**.
- **BETTER WEAR** and **CORROSION RESITANCE**.
- **HIGHER DURABILITY** and **LONGER LIFE**.

Examples of NASA Applications Using Shape Memory Alloys (SMA)

Shape Memory Alloy (SMA) Non-Pneumatic Tires

qUtilization of **Nickel-titanium (NiTi)**, "*psuedoelastic"* Shape Memory Alloy (SMA).

\Box Compliant tire technology:

- \checkmark Carry significant load
- \checkmark Envelop obstacles without permanent deformation or damage

\Box Two types of construction currently available:

- \checkmark Spring Tire
- \checkmark Radially Stiffened Tire
	- Can carry much higher loads than coiled designs
	- More easily scalable for changes in load and tire size requirements

Generation 2 – 2200 N (~500 lbf.)

Generation 1 – 890 N (~200 lbf.)

Shape Memory Alloy (SMA) Non-Pneumatic Tires

Generation 1 – Spring Tire Generation 3 – Radially-Stiffened Tire

Non-pneumatic tire designs have the potential to open the door to thinking about wheel and brake assemblies in a way never before possible.

Wing-tip actuation using SMAs (Ground test)

Wings at 0°

Wings up +75°

Wings down -75°

Wing-tip actuation using SMAs (Flight test)

www.nasa.gov

Wings down

-75°

Wings up

Wings at

 0°

+75°

Wing-tip actuation using SMAs (Close-up Demo)

Copyright @ 2016 Boeing, All rights reserved.

PTERA Test Aircraft Specs:

- · Manufacturer: AREA-I
- •180 lb GVW, 40lb payload
- \cdot 11.3ft span
- •144 kts max airspeed
- Twin JetCat P220
- Research instrumentation

