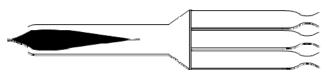
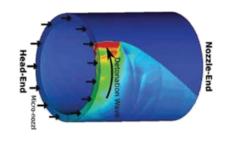
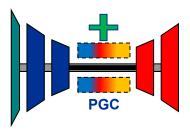

Pressure Gain Combustion 101


Daniel E. Paxson NASA Glenn Research Center Cleveland, Ohio




Pressure Gain Combustion Overview: Principles, Operation, and Applications Propulsion and Energy 2018 Cincinnati, Ohio July 9-11, 2018

Outline

- What is Pressure Gain Combustion (PGC)?
- Fundamental Thermodynamics
- Benefit Examples
- Implementation Strategies

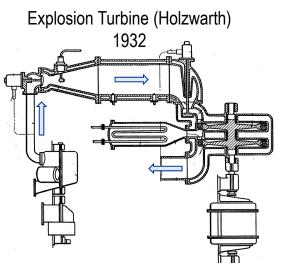
P&E 2018 PGC Overview

What is Pressure Gain Combustion?

PGC[†]: A fundamentally unsteady process whereby gas expansion by heat release is constrained, causing a rise in stagnation pressure* and allowing work extraction by expansion to the initial pressure.

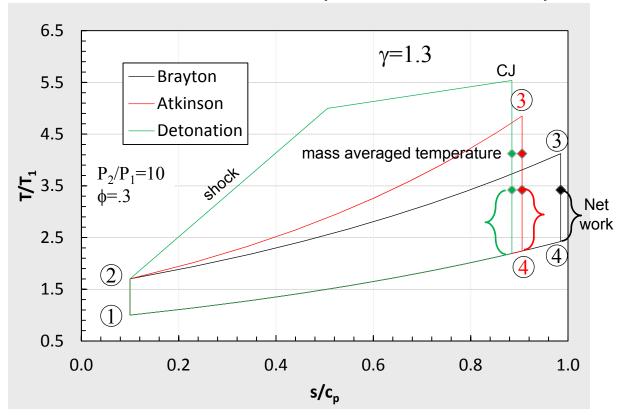
[†]The term "Pressure-Gain Combustion" is credited here to the late J.A.C. Kentfield *Conventional combustion incurs a total pressure loss

The concept actually is old...


Holzwarth Explosion Turbine 1914

The Implementation Approaches, Analysis Tools, and Design Capabilities Are New

Fundamental Thermodynamics

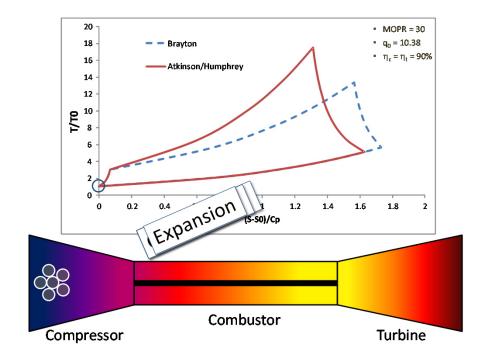


- **Brayton** 1-2: Isentropic (adiabatic) Compression
- 2-3: Isobaric Heat Addition
- 3-4: Isentropic Expansion
- 4-1: Isobaric Heat Rejection

Atkinson

- 1-2: Isentropic (adiabatic) Compression
- 2-3: Isochoric Heat Addition
- 3-4: Isentropic Expansion
- 4-1: Isobaric Heat Rejection

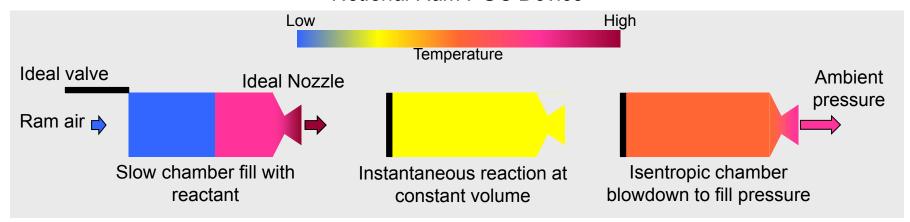
Identical Mechanical Compression, & Heat Input


- •PGC expands by gasdynamic conversion to kinetic energy (e.g. blowdown)
- •Flow to turbine is fundamentally unsteady, and/or spatially non-uniform
- •Peak Atkinson Temperature is only momentary

Fundamental Thermodynamics

Animation of a Representative PGC Cycle With Turbomachinery

- Illustrates essential concepts
- Demonstrates the most basic acceptable level of modeling
- More quantitatively valuable than might be expected.

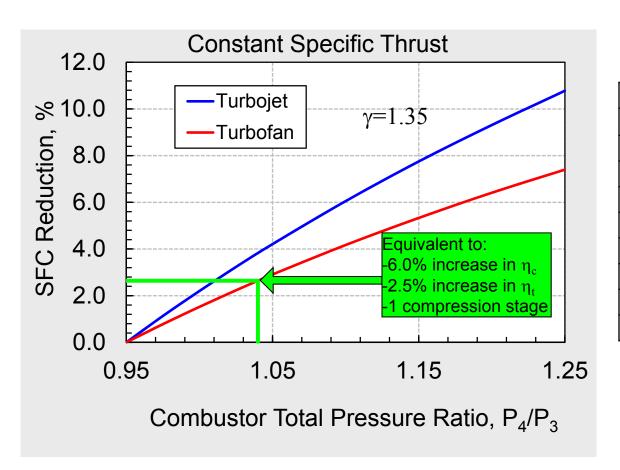


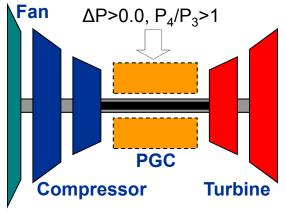
Fundamental Thermodynamics

PGC in Notional Ram Device

- High speed inlet compresses
- Mechanical combustor inlet valve envisioned
- Pressure gain converted to kinetic energy via unsteady nozzle

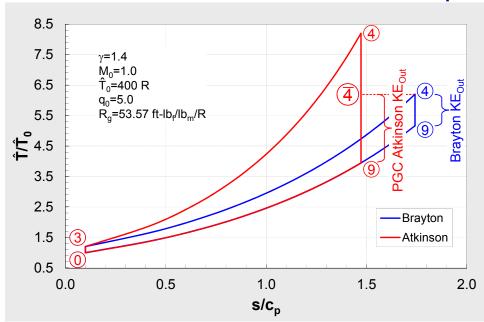
Notional Ram PGC Device


Pressure Rise Provides Increased Availability to Nozzle


Example Benefits

PGC for Gas Turbines

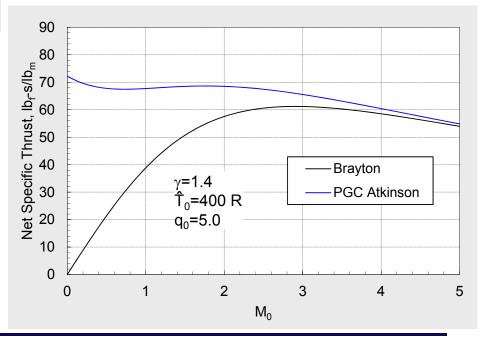
Two specific engines considered T_{t4} , T_{sp} fixed for turbofan (BPR varied) T_{sp} fixed for turbojet (T_{t4} varied)


Engine Parameter	Turbofan	Turbojet
OPR	30.00	8.00
ης	0.90	0.90
$\eta_{\rm t}$	0.90	0.90
Mach Number	0.80	0.80
T _{amb} (R)	410	410
T _{t4} (R)	2968	2400
Burner Pressure Ratio	0.95	0.95
$T_{sp} (lb_f-s/lb_m)$	18.26	75.86
SFC (lb _m /hr/lb _f)	0.585	1.109

Many Other Studies Available

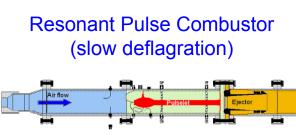
- AIAA-2013-3623
- AIAA-2004-3396
- Etc.

Example Benefits



PGC for Ram Devices

Ideal inlet Ideal nozzle Brayton $P_{t4}/P_{t3}=1.0$


For the Same Heat Addition:

- Same Mass Averaged T_{t4}
- More Kinetic Energy Produced
- Higher Efficiency

Implementation Strategies

NASA Glenn Research Center

University of Cambridge

All Are Fundamentally **Unsteady & Periodic**

Fill →Burn →Blowdown →Repeat

Pulsed Detonation Engines $Log(p/p^*)$ time

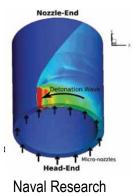
x/L

Pratt & Whitney/United Technologies Research Center

G.E. Global Research Center

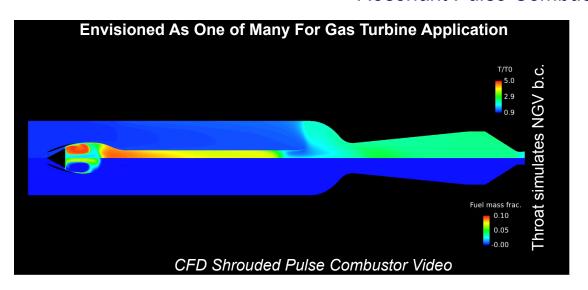
Rotating Detonation Engines

Internal Combustion Wave Rotor ('Fast' Deflagration)



IUPUI/Purdue/LibertyWorks

Air Force Research Laboratory



Laboratory

NASA

Implementation Strategies

Resonant Pulse Combustion

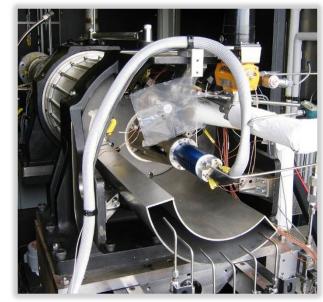
Characteristics

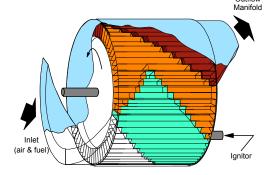
- Self-sustaining (no spark required)
- Self-aspirating (i.e. operates statically) thus unequivocally demonstrates pressure gain
- Readily operates on liquid fuels
- Few or no moving parts
- Relatively low mechanical/thermal stress
- Relatively benign effluent
- Limited performance potential (confined, not constant volume combustion)

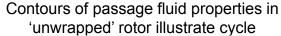
Implementation Strategies

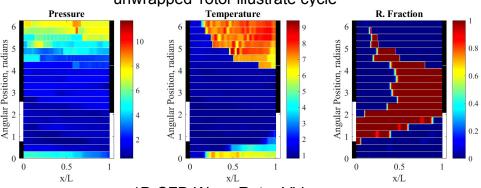
Internal Combustion Wave Rotor (ICWR)

('Fast' Deflagration)

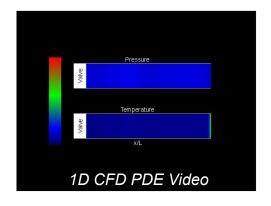



Photo and video courtesy IUPUI and LibertyWorks

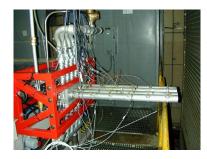

Characteristics

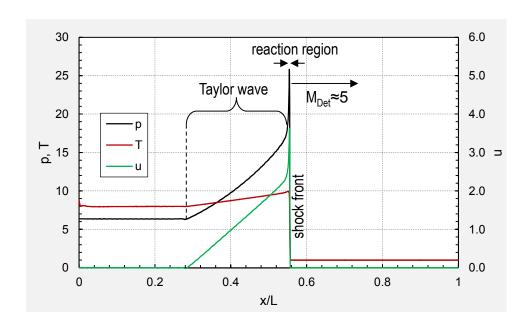

- Flow in ports is nominally steady, though spatially non-uniform
- Rotor is self-cooling is possible
- Very high frequency ignition source req
- Rotation provides valving not power extraction
- Valves implemented at both ends (closest to true constant volume combustion
- Requires sealing between rotor and endwall
- High performance potential
- Measured pressure gain

Operational Rig Video



1D CFD Wave Rotor Video


Implementation Strategies Pulsed Detonation Engines (PDE)

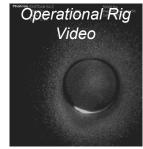


Courtesy Naval Postgraduate School

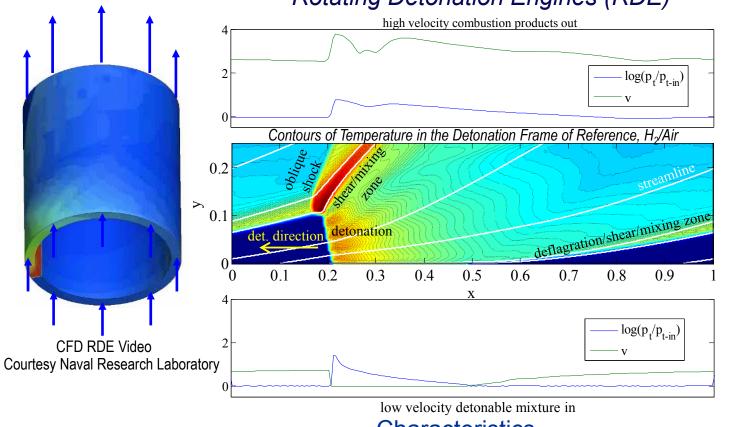
Courtesy Air Force Research Laboratory

Characteristics

- Supersonic detonation approximates CV
- Ignition source required
- Deflagration-to-detonation transition obstacles required
- High frequency valves required
- Highly non-uniform effluent
- High performance potential
- Pressure gain measured



Recent Implementation Approaches Rotating Detonation Engines (RDE)



Courtesy AFRL

Courtesy National Energy Technology Laboratory

Characteristics

- Supersonic detonation (approximating CV) travels circumferentially
- Fluid travels (predominantly) axially
- No ignition source, or DDT obstacles required
- High performance potential
- Very high frequency operation (kHz) typically mandating aero valve
- Highly non-uniform effluent (but less so than PDE)

Conclusion

- Pressure Gain Combustion offers the possibility of substantial performance enhancement in propulsion and power applications
- The concept can be thought of as transforming the basic propulsion cycle from Brayton to Atkinson/Humphrey
- Targets improvement at the major source of entropy generation
- There are numerous ways to implement PGC: All are fundamentally unsteady

P&E 2018 PGC Overview

END