Alignment and Bonding of Silicon Mirrors for High-Resolution Astronomical X-ray Optics [10699-141]

Kai-Wing Chana,b, James R. Mazzarellaa,c, Timo T. Sahaa, William W. Zhanga, Ryan S. McClellandd, Michael P. Biskachb,e, Peter M. Sollyb,c, Ryan S. McClellandd, Peter M. Sollyb,c, Raul E. Riverose, Ai Numatab,c
aCenter for Research and Exploration in Space Science and Technology & University of Maryland, Baltimore County, Maryland, USA; bStinger Ghaffarian Technologies, Inc., Maryland, USA; cNASA/Goddard Space Flight Center, Maryland, USA

Mirror Alignment for Large X-ray Telescopes

- Future large x-ray astronomy missions require large area and high resolution
- Present consensus is to integrate thin, lightweight, segmented mirrors to form a compact but large telescope with high resolution (better than 1")
- Key technologies
 1. Accurate mirror substrates: polishing high quality mono-crystalline silicon
 2. Stress-free reflective coating: stress-based distortion cancellation
 3. Precise alignment and integration: kinematic mounting and distortion-free bonding
- Four-point alignment for quasi-cylindrically symmetric mirrors (segments)
 4. Point alignment: Pitch and yaw angles, image center (X, Y) are controlled by heights of the 4 mount points
 5. Alignment Precision: better than 1"
 6. Bonding error: ~ 0.1µm (~ 1")
 7. Current single mirror pair x-ray tested: 3" (Half-Power Diameter)
- Integration into (meta) shell
 - Shell structure has rotationally defined axis
 - Interlocking mirrors ⇒ lightweight, mechanically strong telescope

Focus and Precision of Alignment and Bonding

- Individual mirror statically determined by the 4 spacers
- Mirrors are acoustically settled
- Sub-aperture measurement of mirror images in a collimated beam qualifies the alignment
- Corrective spacer height is achieved by polishing
- Epoxy applied to round-top spacers bonds mirror in place

4-Point Alignment of Mirrors

- Pitch (θ\textsubscript{p}) and yaw (θ\textsubscript{y}): compactness of focus
- ΔX, ΔY: image center onto the optical axis of system
- Rotation (φ\textsubscript{x}) is invariant from cylindrical symmetry
- ΔZ1 is nearly invariant from small grazing angle (long focal length)
- Co-alignment of "primary" and "secondary" mirrors, and mirrors in the next [(n+1)2] shell, are done through a common optical axis reference

Summary: X-ray Test Result

- Aligned and Bonded mirrors were tested at GSFC and MPE Panter
- Resolution of single pair of mirror is 3 arcsecond
- Flux is uniform (except at the spacers)
- Alignment of mirror in the second shell is achieved in optical beam at 1" (not x-ray tested yet)

 Planned work:
 - Complete alignment, bonding, and testing of multiple pairs (in progress)
 - Integration of mirrors onto meta-shell structure (in implementation)
 - New precision mirror positioning structure (in development)

For Further Information

Silicon Mirror Fabrication: Raul Riveros, 10699-23 [Monday, 2:00 PM] Raul.E.Riveros@nasa.gov
Mirror Alignment and Bonding: Kai Chan, 10699-141 [this poster] Kai-Wing.Chan-1@nasa.gov
Telescope Design and analysis: Peter Solly Peter.M.Solly@nasa.gov
Optics design and analysis: 10699-179 [Wednesday, 6 PM Poster] Timo.T.Saha@nasa.gov

Acknowledgment

NGXO research is supported by NASA Strategic Astrophysics Technology (SAT) under Research Opportunities in Space and Earth Sciences (ROSES)