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Galactic Binaries in LISA Data

2

Credit: LISA Mission Proposal for L3 submitted to ESA

While individual sources are relatively simple 

- Thousands of individually resolvable systems 

- Large dynamic range 

- Unknown noise level 

- Over-fitting = contamination in catalog 

- Under-fitting = excess noise for other sources 

this is a hard (c.f. interesting) problem!

The Galactic Binary Problem
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Credit: LISA Mission Proposal for L3 submitted to ESA Credit: Crowder et al (MT/JPL) in response to MLDC 2 
Crowder & Cornish, PRD 75, 2007
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Credit: LISA Mission Proposal for L3 submitted to ESA Credit: Crowder et al (MT/JPL) in response to MLDC 2 

Metropolis-Hastings algorithm 

F-statistic likelihood 

non-Markovian proposals in search 

Laplace approximation to evidence

Crowder & Cornish, PRD 75, 2007
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Credit: LISA Mission Proposal for L3 submitted to ESA Credit: Littenberg, PRD 84, 2011 in response to MLDC 4
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Credit: LISA Mission Proposal for L3 submitted to ESA Credit: Littenberg, PRD 84, 2011 in response to MLDC 4

Expanded parameter space 

Parallel tempering 

RJMCMC for coarse model selection 

Parameterized noise model
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Decompose data into signal 
and noise contributions
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Output residuals with 
uncertainties…

Decompose data into signal 
and noise contributions
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Model Everything…
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Output residuals with 
uncertainties…

Decompose data into signal 
and noise contributions …and parameter estimates
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Improved data model 

• More flexible noise model 

• Time-frequency spectral model 

• Parameterized model for confusion 

noise 

• Accomodate gaps in data 

• Efficiently incorporate new data

Smarter priors 

• Hyperparameters for spatial 

distribution 

• Informed priors on chirp mass 

distribution from population models 

• Build priors from previous data, or 

EM observations

Increased sampling efficiency 

• Data-driven likelihood-based 

proposals…  

• and sampler-driven proposals from 

preliminary catalogs… 

• …mean RJMCMC can be used for 

model selection
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Galaxy-model prior for sky location 

“Malmquist” like SNR prior 

Population-based chirp mass priors? 

*Build priors from posteriors for low-
latency updates*
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Demonstration on 1 week of data
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~130 unambiguous detections
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