Ultra-compact Binary Analysis with LISA

Tyson B. Littenberg [NASA/MSFC] in collaboration with N. Cornish, T. Robson [MSU]

Credit: LISA Mission Proposal for L3 submitted to ESA

The Galactic Binary Problem

While individual sources are relatively simple

- Thousands of individually resolvable systems
- Large dynamic range
- Unknown noise level
- Over-fitting = contamination in catalog
- Under-fitting = excess noise for other sources

this is a hard (c.f. interesting) problem!

Credit: LISA Mission Proposal for L3 submitted to ESA

Credit: Crowder et al (MT/JPL) in response to MLDC 2 Crowder & Cornish, PRD 75, 2007

Credit: LISA Mission Proposal for L3 submitted to ESA

Credit: Crowder et al (MT/JPL) in response to MLDC 2 Crowder & Cornish, PRD 75, 2007

Credit: LISA Mission Proposal for L3 submitted to ESA

Credit: Littenberg, PRD 84, 2011 in response to MLDC 4

Credit: LISA Mission Proposal for L3 submitted to ESA

Credit: Littenberg, PRD 84, 2011 in response to MLDC 4

RJMCMC in GW Astronomy

7

RJMCMC in GW Astronomy

Data model

$$d(f) = \sum_{i}^{N} h_{i}(f; \vec{\theta}) + n(f), \ \langle |n(f)|^{2} \rangle = \frac{T}{2} S_{n}(f; \vec{\eta})$$

Parameters

$$\vec{x} \to \{N \times \vec{\theta}, \vec{\eta}\}$$

Likelihood

$$\ln p(d|\vec{x}) \propto -\frac{1}{2} \sum_{f} \left(\frac{|d(f) - h_i(f;\vec{\theta})|^2}{\frac{T}{2} S_n(f;\vec{\eta})} + \ln S_n(f;\vec{\theta}) \right) + \frac{1}{2} \sum_{f} \left(\frac{|d(f) - h_i(f;\vec{\theta})|^2}{\frac{T}{2} S_n(f;\vec{\eta})} + \frac{1}{2} \sum_{f} \left(\frac{|d(f) - h_i(f;\vec{\theta})|^2}{\frac{T}{2} S_n(f;\vec{\eta})} \right) + \frac{1}{2} \sum_{f} \left(\frac{|d(f) - h_i(f;\vec{\theta})|^2}{\frac{T}{2} S_n(f;\vec{\eta})} + \frac{1}{2} \sum_{f} \left(\frac{|d(f) - h_i(f;\vec{\theta})|^2}{\frac{T}{2} S_n(f;\vec{\theta})} + \frac{1}{2} \sum_{f} \left(\frac{|d(f) -$$

3x10⁻⁶

Ч

3x10⁻⁶

10

Ч

3x10⁻⁶

Ч

 $H_{\vec{x}\to\vec{y}} = \frac{p(d|\vec{y})}{p(d|\vec{x})} \frac{p(\vec{y})}{p(\vec{x})} \frac{q(\vec{x}|\vec{y})}{q(\vec{y}|\vec{x})}$

Improved data mode

- More flexible noise model
- Time-frequency spectral model
- Parameterized model for confusion noise
- Accomodate gaps in data
- Efficiently incorporate new data

Smarter priors

- Hyperparameters for spatial distribution
- Informed priors on chirp mass distribution from population models
- Build priors from previous data, or EM observations

 $H_{\vec{x}\to\vec{y}} = \frac{p(d|\vec{y})}{p(d|\vec{x})} \frac{p(\vec{y})}{p(\vec{x})} \frac{q(\vec{x}|\vec{y})}{q(\vec{y}|\vec{x})}$

Increased sampling efficiency

- Data-driven likelihood-based proposals...
- and sampler-driven proposals from preliminary catalogs...
- ...mean RJMCMC can be used for model selection

 $H_{\vec{x}\to\vec{y}} = \frac{p(d|\vec{y})}{p(d|\vec{x})} \frac{p(\vec{y})}{p(\vec{x})} \frac{q(\vec{x}|\vec{y})}{q(\vec{y}|\vec{x})}$

Improved data mode

- More flexible noise model
- Time-frequency spectral model
- Parameterized model for confusion noise
- Accomodate gaps in data
- Efficiently incorporate new data

Smarter priors

- Hyperparameters for spatial
- distribution
- Informed priors on chirp mass distribution from population models
- Build priors from previous data, or EM observations

Increased sampling efficiency

- Data-driven likelihood-based proposals...
- and sampler-driven proposals from preliminary catalogs...
- ...mean RJMCMC can be used for model selection

 $H_{\vec{x}\to\vec{y}} = \frac{p(d|\vec{y})}{p(d|\vec{x})} \frac{p(\vec{y})}{p(\vec{x})} \frac{q(\vec{x}|\vec{y})}{q(\vec{y}|\vec{x})}$

Improved data mode

- More flexible noise model
- Time-frequency spectral model
- Parameterized model for confusion noise
- Accomodate gaps in data
- Efficiently incorporate new data

Smarter priors

- Hyperparameters for spatial distribution
- Informed priors on chirp mass distribution from population models
- Build priors from previous data, or
 EM observations

Increased sampling efficiency

- Data-driven likelihood-based proposals...
- and sampler-driven proposals from preliminary catalogs...
- ...mean RJMCMC can be used for model selection

"Malmquist" like SNR prior

Population-based chirp mass priors?

Build priors from posteriors for lowlatency updates

 $p(d|\vec{y}) p(\vec{y}) q(\vec{x}|\vec{y})$ $\overline{p(d|\vec{x})} \ \overline{p(\vec{x})} \ \overline{q(\vec{y}|\vec{x})}$

f = 7.719040 mHz

Demonstration on 1 week of data

Ultra-compact Binary Analysis with LISA

Tyson B. Littenberg [NASA/MSFC] in collaboration with N. Cornish, T. Robson [MSU]

