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Introduction

SiC;/SiC Ceramic Matrix Composites (CMCs) are currently being implemented in high-
temperature applications such as the new generations of aircraft engines due to the Improved
engine efficiency obtained by using high-temperature capable CMC components & Reduced
component weight, cooling requirements, fuel consumption & emissions (NO, and CO,).
Electrical Resistivity has been shown to be very sensitive to damage in CMCs, and although, it is
highly dependent on CMCs’ damage state and temperature, this dependence is still not well
understood. It is investigated here with the use of ceramic matrix minicomposites.
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Materials and Properties
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The volume and mass of the fiber tow were estimated based on the average fiber diameter, number of fibers per tow,
specimen length and density.

The volume and mass of the interphase were estimated considering BN thickness of 1 um on each fiber using SEM.
Then backed out the volume and mass of the matrix from ROM.
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Experimental Setup
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» Room temperature monotonic and cyclic tensile loading

«  Displacement control: 0.08-0.5 mm/min > Electrical Resistance monitoring
R Load cell: 500 N or 5000 N e Four-probe method with Agl'ent multimeter

. Inner probe spacing: RT 25.4 mm, HT 88 mm
»Elongation measurement
« LVDT attached to specimen tabs

» Modal Acoustic Emission monitoring

. Digital Wave Fracture Wave Detector

. AE sensors placed on epoxy tabs

. Only AE events originating from gage section used for analysis
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Electrical Resistivity Model For As-fabricated
Minicomposites
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» RT Resistivity of the CVI-SIC matrix was assumed to be
310 Q*mm which is the resistivity value for
minicomposites with 97% CVI-SIC content

» RT Resistivities of the Hi-Nicalon™ fibers, Hi-Nicalon
S™ fibers, C interphase and BN interphase were
assumed to be 30, 15, 0.078, 1*10'° Q*mm respectively.
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Electrical Resistivity Model For Damaged
Minicomposites

When CMCs are loaded above the matrix cracking stress:

» Fibers carry all of the applied load in the vicinity of through-thickness matrix crack.

» In the fiber/matrix debond region, load transfer and sharing is dictated by the interfacial shear stress.
Then two electrical current path extremes are modeled:

1) Electrical current is only carried by the fibers in crack opening displacement (u).

2) Electrical current is only carried by the fibers in crack opening displacement (u) and in debond region 25

%R f — Matrix
E f f ) o/f ; : Fibers
Em(1-f)

» Matrix crack opening**, U =

4Tf2Ef(1+

where R;is the fiber radius, t is the interfacial shear stress,

and E is the elastic modulus.

Stress

aRf(o-+0-res)
2T

» Sliding or stress-transfer length**, 6 =

where § represents associated with the interfacial shear

stress where a is (1-f )E,, /f E; and o is the residual stress f wﬂ/
Matrix Cracks

*Hutchinson, J. W., Jensen, H. M., Sep. 1990. Models of fiber debonding and pullout in brittle composites with friction. Mech. Mater. 9 (2), 139-163. 10.

**W.A. Curtin, B.K. Ahn, N. Takeda, Modeling brittle and tough stress—strain behavior in unidirectional ceramic matrix composites, Acta Mater. 46 (10) (1998) 3409-3420.
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Modelling Matrix Cracking Formation Effect on ER @
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Modelling Matrix Cracking Formation Effect on ER
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»  Hi-Nicalon™ /BN minicomposite ~ 77.49% of current
Is carried by the fibers and 22.5 % by the matrix

»  Hi-Nicalon S™ /BN minicomposite ~ 80.49% of current
Is carried by the fibers and 19.4 % by the matrix

»  Hi-Nicalon™ /C minicomposite ~ 0.83% of current is
carried by the fibers and 0.25 % by the matrix and
98.9 % by the C interphase.
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Influence of Hysteresis Loading on ER of SIC/SIC
Macrocomposite and Minicomposite
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Electrical resistance in Hi-Nicalon™ macrocomposites* changed during cyclic tensile loading,
where it started increasing with the increase in stress above the onset of matrix cracking
stress. Next, it continued to increase with the increase in maximum stress applied. Upon
unloading, the resistance decreased and reached its lowest value in the loop.
Unloading and reloading in minicomposites has a different effect on the electrical resistance
compared with the hysteresis loops’ effect on ER in a macrocomposite which is due to the
complex fiber architecture in macrocomposites where outer tows apply pressure on the inner
tows which increases the wear during unload reload cycles.

*Smith, C., Morscher, G., & Xia, Z. (2008). Monitoring damage accumulation in ceramic matrix composites using electrical resistivity. Scripta Materialia,

59(4), 463-466. doi:10.1016/j.scriptamat.2008.04.033

Www.nhasa.gov 1



National Aeronautics and Space Administration

Effect of High Temperature Cycles on CVI-SiC Matrix
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Effect of Fiber Content and Matrix Cracks on ER Temperature Dependence &3
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» Plateau in ER of precracked minis above 570 °C may

be caused by the oxidation of the BN interphases and
Hi-Nicalon S™ fibers in the vicinity of CVI-SiC matrix
cracks in the precracked minicomposites contributed to
an increase in precracked minicomposites’ electrical
resistivity.

The increase in Hi-Nicalon S™ fibers volume fractions
(decrease in CVI-SIiC volume fractions) in the
precracked minicomposites effectively decreased the
resistivity of the material since Hi-Nicalon S™ fibers are
more conductive than CVI-SiC matrix.
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Effect of Matrix Cracks on ER in Creep
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ER percent change in precracked minicomposite in creep is smaller than that of as-fabricated minicomposite.

In pristine minicomposites, a parallel circuit with no cracks is assumed for electrical current. The current will

prefer more conductive constituent so these seem to be the possible scenarios:

» Matrix crack formation.

» Increase in fiber and/or matrix resistivity due to elongation. Not too much.

» Decoupling of fiber and matrix — It's possible for fibers to contract due to poisson’s effect due to stress
increase and matrix to pull away from fibers which would push current to fibers.

» Fiber breakage during the test which would push current to matrix.

» The high matrix relaxation in pristine samples and rapid load shedding from CVI-SiC matrix to Hi-Nicalon S
fibers during primary creep stage. This scenario is possible depending on the piezoresistivity* of the fibers

where some materials have increase in resistivity with stress.
*Akira Kishimoto,Ginjiro Toyoguchi and Hiroshi Ichikawa "Piezoresistivity of Hi-Nicalon Type-S Silicon Carbide-Based Fiber"
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Effect of Matrix Cracks on ER in Creep
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» Both curves show a rapidly increasing primary region over the same time interval, followed
by a quasi-steady-state increase to rupture.

» The increase in ER maybe due to the increased length and “decreased” cross-sectional area
due to creep.
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Conclusions

» The influence of fiber content, type, interphase, heat treatment cycles and creep
on electrical resistivity measurements of SiC,/SIC minicomposites was studied.

» Derived ER model for minicomposites with different fiber type, fiber content and
Interphase type in monotonic tensile tension at RT.

» ER response during unload/reload loops in minicomposites is different than that
In macrocomposites due to the more wear and sliding that occurs in
macrocomposites and other aspects such as non-through-thickness transverse
cracking, interlaminar cracking and maybe larger scale fiber breakage, which are
not pertinent to single tow minicomposites.

» ER is temperature dependent and has shown sensitivity to oxidation at
iIntermediate temperatures in precracked samples.
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