

NASA Goddard Space Flight Center's Compendium of Recent Single Event Effects Results

Martha V. O'Bryan¹, Kenneth A. LaBel², Edward P. Wilcox², Dakai Chen³, Edward J. Wyrwas⁴, Michael J. Campola², Megan C. Casey², Jean-Marie Lauenstein², Alyson D. Topper¹, Carl M. Szabo¹, John W. Lewellen⁵, and Michael A. Holloway⁵

1. AS&D, Inc.; 2. NASA GSFC; 3. Analog Devices Inc. (formerly with NASA GSFC); 4. Lentech, Inc.; 5. Los Alamos National Laboratory

Martha O'Bryan

Abstract: We present the results of single event effects (SEE) testing and analysis investigating the effects of radiation on electronics. This paper is a summary of test results.

Table V: Summary of SEE Test Results

LET in MeV•cm²/ma

 $EL LET_{th} > 34.9$;

1.8 x 10⁻¹⁰ cm⁻²/bit

eV Kr (LET=31) part-part

ility with SEGR at -150 VDS.

ures with 659 MeV Cu

21) at full rated -200 V_D

with part-part variability of

old. 400 MeV Ar (LET=9.7):

ass/first fail $V_{DS} = 51/57V$; 659

k 785 MeV Cu (LET=20&21):

28&31): 39/42V. Dose effects

piases including Vth and IDSS

dation at 0 V_{DS}. [23]

aser energy of ~64 nJ.

duration of 10 ns.

(TAMU2017Oct) No destructive events observed for

Worst case transients had an

amplitude of approximately 1 V and

V; 886 MeV & 993 MeV Kr

Introduction

NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single-event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is challenging. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the

Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET)

For total ionizing dose (TID) results, see a companion paper submitted to the 2018 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "NASA Goddard Space Flight Center's Compendium of Recent Total Ionizing Dose and Displacement Damage Dose Results" by A. D. Topper, et al. [2]

Static/Biased - The DUT was provided basic power

and configuration information (where applicable), but not

may or may not have been actively monitored during

irradiation, while the power supply current was actively

Test Techniques and Setup

the path length of the ion through the DUT and LETs available varied slightly from one Proton SEE tests were performed at logic analyzer as appropriate (e.g. a data-converte Massachusetts General Francis H. Burr analog output channels). Occasionally a golden-chi

California Protons Cancer Therapy Center (formerly Scripps Proton Therapy Center) [8], are highly application-dependent and may only repre Mayo Clinic [9], ProVision Center for Proton Therapy [10], and the Proton Therapy Center at Cincinnati Children's Hospital [11].

Laboratory using both Single-Photon and immediat Absorption (SPA) and Two-Photon Absorption unpowered ar having a wavelength of 590 nm resulting in a decreased to 1/e - or about 37% - of its intensity at the surface) of 2µm. A nominal pulse rate of 1 kHz was utilized. Pulse width was 1 ps, beam spot size ~1.2 µm.

Table I: LBNL Test Heavy Ions

lon	Energy (MeV)	LET in Si (MeV•cm²/mg) (Normal Incidence)	Range in Si (µm)		
	LBNL 10 MeV per amu tune				
¹⁸ O	183	2.2	226		
²² Ne	216	3.5	175		
⁴⁰ Ar	400	9.7	130		
23 V	508	14.6	113		
⁶⁵ Cu	660	21.2	108		
⁸⁴ Kr	906	30.2	113		
¹⁰⁷ Ag		48.2	90		
¹²⁴ Xe	1233	58.8	90		
	Tahla II: TAN	ALL Test Heavy	lone		

Table II: TAMU Test Heavy Ions

lon	Energy (MeV)	Surface LET in Si (MeV•cm²/mg) (Normal Incidence)	Range in Si (µm)
	TAMU 15 N	MeV per amu tune	
¹⁴ N	210	1.3	428
²⁰ Ne	300	2.5	316
⁴⁰ Ar	599	7.7	229
⁶³ Cu	944	17.8	172
⁸⁴ Kr	1259	25.4	170
¹⁰⁹ Ag	1634	38.5	156
¹²⁹ Xe	1934	47.3	156
¹⁹⁷ Au	2954	80.2	155
	TAMU 25 N	MeV per amu tune	
⁸⁴ Kr	2081	19.8	332
¹³⁹ Xe	3197	38.9	286

(e.g. a function generator providing a pair of square wave

inputs to a comparator while an oscilloscope captured	Investigators		
output glitches). Digital devices were operated by a	Principal Investigator (PI)	Abbreviation	
computer, FPGA, or microcontroller while outputs were monitored with the same (e.g. a memory actively written-	Melanie D. Berg	MB	
to or read-from by an FPGA), or with an oscilloscope or	Michael J. Campola	MJC	
logic analyzer as appropriate (e.g. a data-converter with	Megan C. Casey	MCC	
analog output channels). Occasionally a golden-chip test may be performed where an irradiated device is directly	Dakai Chen	DC	
compared to an identical, unirradiated device and any	Jean-Marie Lauenstein	JML	
differences recorded. In all cases the power supply levels	Edward (Ted) Wilcox	TW	
were actively monitored during irradiation. These results are highly application-dependent and may only represent	Edward Wyrwas	EW	
the specific operational mode tested.			

	L⊏ = linear energy transfer (lvie v•cm²/mg)
Unpowered - The DUT was characterized prior-to	LET _{th} = linear energy transfer threshold (the
I immediately-following irradiation, but was completely	"maximum LET value at which no effect
owered and unmonitored during irradiation.	observed at an effective fluence of
In SEE experiments, DUTs were monitored for soft	1x10 ⁷ particles/cm ² – in MeV•cm ² /mg)
ors, such as SEUs, and for hard errors, such as	< = SEE observed at lowest tested LET
GR. Detailed descriptions of the types of errors	> = no SEE observed at highest tested LET
,	σ = cross section (cm ² /device, unless specific
served are noted in the individual test reports [16], [17].	cm²/bit)
SET testing was performed using high-speed	σ_{maxm} = cross section at maximum measured
illoscopes controlled via National Instruments	(cm²/device, unless specified as cm²/bi
VIEW®. [19]. Individual criteria for SETs are specific	ADC = analog-to-digital converter
he device and application being tested. Please see the	CMOS = complementary metal oxide
vidual test reports for details [16], [17].	semiconductor
Heavy ion SEE sensitivity experiments include	DDR = double data rate
ricary for OLE scriptivity experiments include	DLIT – device under test

(LET_{th}) and cross section at the maximum me The LET_{th} is defined as the maximum LET va no effect was observed at an effective fluen particles/cm². In the case where events are the smallest LET tested, LET_{th} will either be less than the lowest measured LET or approximately as the LETth parameter from In the case of SEGR and SEB measurements are made of the SEGR or SEB threshold

2) SEE Testing - Proton:

calibrated energy meter.

Proton SEE tests were performed in a manner similar
to heavy ion exposures. However, because protons
usually cause SEE via indirect ionization of recoil
particles, results are parameterized in terms of proton
energy rather than LET. Because such proton-induced
nuclear interactions are rare, proton tests also feature
higher cumulative fluences and particle flux rates than
heavy ion experiments.

image the area of interest thereby facilitating accurate

Test Results

investigators		
Principal Investigator (PI)	Abbreviation	
Melanie D. Berg	MB	
Michael J. Campola	MJC	
Megan C. Casey	MCC	
Dakai Chen	DC	
Jean-Marie Lauenstein	JML	
Edward (Ted) Wilcox	TW	
Edward Wyrwas	EW	

LET = linear energy transfer (MeV•cm²/mg) LET _{th} = linear energy transfer threshold (the maximum LET value at which no effect was observed at an effective fluence of 1x10 ⁷ particles/cm² – in MeV•cm²/mg) < = SEE observed at lowest tested LET
> = no SEE observed at highest tested LET
σ = cross section (cm²/device, unless specified as cm²/bit)
σ_{maxm} = cross section at maximum measured LET (cm ² /device, unless specified as cm ² /bit)
ADC = analog-to-digital converter
CMOS = complementary metal oxide
semiconductor
DDR = double data rate
DUT = device under test
ECC = error correcting code

er threshold		ECC = e
easured LET.		GE = Ge
alue at which		H = heav
nce of 1×10 ⁷		ID# = ide
observed at		IDSS = c
reported as		lout = ou
determined		LBNL =
		LDC = lc
a Weibull fit.		LPP = lo
experiments,		MLC = n
		140055

V_{ds} (drain-to-source voltage) as a function of LET and ion energy at a fixed V_{as} (gate-to-source voltage).

Proton SEE tests were performed in a manner similar

3) SEE Testing - Pulsed Laser Facility Testing

The DUT was mounted on an X-Y-Z stage in front of a 100x lens that produces a spot diameter of approximately tage can be moved in steps of 0.1 µm for accurate focused beam. An illuminator, together with a chargepositioning of the device in the beam. The pulse energy was varied in a continuous manner using a polarizer/halfwaveplate combination and the energy was monitored by splitting off a portion of the beam and directing it at a

Overview

ilivestigators		
Principal Investigator (PI)	Abbreviation	
Melanie D. Berg	MB	
Michael J. Campola	MJC	
Megan C. Casey	MCC	
Dakai Chen	DC	
Jean-Marie Lauenstein	JML	
Edward (Ted) Wilcox	TW	
Edward Wyrwas	EW	
Edward Wyrwas	EW	

LET = linear energy transfer (MeV•cm²/mg)	
LET _{th} = linear energy transfer threshold (the	
maximum LET value at which no effect was	
observed at an effective fluence of	
1x10 ⁷ particles/cm ² – in MeV•cm ² /mg)	
< = SEE observed at lowest tested LET	
> = no SEE observed at highest tested LET	
σ = cross section (cm ² /device, unless specified as	
cm ² /bit)	
σ_{maxm} = cross section at maximum measured LET	
(cm ² /device, unless specified as cm ² /bit)	
ADC = analog-to-digital converter	
CMOS = complementary metal oxide	
semiconductor	
DDR = double data rate	

Semiconductor
DDR = double data rate
DUT = device under test
ECC = error correcting code
GE = General Electric
H = heavy ion test
ID# = identification number
IDSS = drain-source leakage current
lout = output current
LBNL = Lawrence Berkeley National L
LDC = lot date code

	LDIVL = Lawrence berkeley National Laboratory
	LDC = lot date code
	LPP = low power plus
	MLC = multi-level cell
	MOSFET = metal-oxide-semiconductor field-effec
	transistor
	NMC = Northwestern Medicine Chicago Proton

NRL = Naval Research Laboratory PCM = phase change memory REAG = Radiation Effects and Analysis Group RF = radio frequency SBU = single-bit upset

SEB = single event burnout

SOC = system on chip TAMU = Texas A&M University Cyclotron Facility

ns = drain-source voltage /_{GS} = gate-source voltage

ADC = analog-to-digital converter
CMOS = complementary metal oxide
semiconductor
DDR = double data rate
DUT = device under test
ECC = error correcting code
GE = General Electric
H = heavy ion test
ID# = identification number
IDSS = drain-source leakage current

aboratory

SDRAM = synchronous dynamic random access

V_{th} = gate threshold voltage

MT46V128M8P SEFI LET $_{th}$ < 1.3; SEFI $\sigma \sim 5 \times 10^{-4} \text{ cm}^2 [20]$ MT29F4G08ABADAWF SEU σ (MLC mode)

		Power Transistors:							
nce was to until an event was 1×10^{10} to 1×10^{11} p ⁺ /cm ² at a 1×10^{10} (i.e. 200 MeV, etc).		MEMPEK1W016GAXT	Intel	(17-045)	Non-Volatile Memory	CMOS/ PCM	(Chicago2017Nov)	200 MeV protons, SEFI σ ~ 6.93x10 ⁻¹⁰ cm ² , Upset mode has elevated current draw. [22]	12 V
All SEL tests are performed to a 1×10 ⁷ particles/cm ² unless noted. Proton tests were t a flux of 1x10 ⁷ to 1x10 ⁹ p+/cm ² -		MT29F512G08AUCBBH8	Micron	(17-051)	Flash	CMOS	H: (LBNL2017June) MJC	SEU LET _{th} < 0.89; SEU $\sigma \sim 1.6 \times 10^{-10} \text{cm}^{-2}/\text{bit}$; SEFI LET _{th} 1.78 < x < 3.49; SEFI $\sigma \sim 1 \times 10^{-5} \text{cm}^{-2}$.	3.3 \
mg and all cross sections are in								SEL LET _{th} > 58.78. [21]	

stigator (PI)	Abbreviation							JIML/IMICC	(LET = :
rg npola	MB MJC		SQJ431EP-TI-GE3	Vishay	(16-025)	MOSFET	p-channel trench	H: (LBNL2017Apr)	886 Me variabili No failu
sey	MCC DC	_							(LET = SEB, w thresho
uenstein Wilcox	JML TW		Si7414DN-T1-E3	Vishay	(16-030)	MOSFET	n-channel trench	H: (TAMU2017Mar; LBNL2017Apr)	last pas MeV & 36/39V;
as	EW						попоп		(LET=2) at all bia degrada
V: Abbrevi Conventi							n-channel		SEB, wi

Memory Devices:

NVTFS5116PLWFTAG	ON Semiconductor	(17-006)	MOSFET	p-channel	JML/MCC H: (TAMU2017Mar; LBNL2017Apr) JML/MCC	(LET=28&31): 39/42V. Dose effects at all biases including Vth and I _{DSS} degradation at 0 V _{DS} . [23] 886 MeV Kr (LET=31) part-part variability with SEGR at -52 V _{DS} . No failures with 659 MeV Cu (LET = 21) at full rated -60 V _{DS} .[23] Static and RF-mode tests reveal	0 V _{GS}	6
CGHV59350F	CREE	C32956S, D1312S (17-065)	JFET	GaN HEMT	H: (TAMU2017Jun; 2017Oct) JML	significant part-part variability: additional testing scheduled. Contact PI.	-5 V _{GS} ; RF: 50 V _{DS}	7
Engineering Samples, various	GE	(17-084)	MOSFET	SiC VDMOS	H: (TAMU2017Jun) JML	Contact PI.	0 V _{GS}	84
FPGA Devices:				I ADIMO2	JUVIL			

various		, ,		4 DIVIO2	JIVIL				
A Devices:									
150-CB1657PROTO	Microsemi	1638 (17-003)	FPGA	65 nm CMOS	MR	Flip-Flops: 1 <seu let<sub="">th <1.8 Configuration: SEU LET_{th} > 60 SEL LET_{th} > 60 [24]</seu>	nominal	1	
U040-1LFFVA1156I (intex-UltraScale	Xilinx	1509 (15-061)	FPGA	FPGA (20 nm planar)	TH. (TAIMILIZOT/Mar.	Configuration bits: SEU LET _{th} <0.07; SEFI LET _{th} <1.8 SEL LET _{th} > 50 [25]	nominal	2 (1 each test date)	
ellaneous Devices:									
_				44		200 MeV protons,			

	AIIIIX	(45.004)	FPGA	(∠U nm	TANILIOO47D \ NAD	SEF LE th < 1.8	nominai			
itex-UltraScale		(15-061)		planar)	TAMU2017Dec) MB	SEL LET _{th} > 50 [25]		test date)		F
llaneous Devic	es:									
G-P4-6152-KR	nVidia	2016 (17-039)	Processor	14 nm FinFET CMOS	Protons: (MGH2017Apr) EW	200 MeV protons, SEFI $\sigma \sim 1.42 \times 10^{-10} \text{ cm}^2$, SEU $\sigma \sim 1.37 \times 10^{-10} \text{ cm}^2$. Upset modes include SEFI, pixel artifacts and clock tree failure. [26]	12 VDC	1		В
neering Samples	NASA GRC	(17-066)	Ring Oscillator	SiC	,	no catastrophic SEE up to 2006- MeV Au (LET(Si) = 87)	+/- 28 V	3		В
DRV102	Texas Instruments	1440 (16-037)	PWM Solenoid/ Valve Drive	CMOS	H: (TAMU2017Jun) MJC	SEL LET _{th} > 79; SET LET _{th} < 13; SET σ ~ 5x10 ⁻³ cm ² Observed SETs included: 1) Changes in the pulse-width on the output, both shortening and lengthening of the duty cycle, 2) False triggers on the thermal shutdown flag, and 3) Altering of the 24kHz output frequency for no more than one clock cycle. [27]	28 V	6	_	B
AD654	Analog Devices	0630 (16-036)	Op-Amp	Bipolar	H: (LBNL2017Apr)	SEL LET _{th} > 58.78; LET _{th} < SET 2.19 [28]	1 and 5 V	4		
						No destructive events observed at a				

MiniCircuits (17-004) RF Switch CMOS (NRL2017Feb)

Low Dropout

Voltage

(17-062)

BAS70-05-7-F NSR0140P2T5G CMPD2003 T' MMBD1501A BAS21,215 BAS21-E3-08 No failures or degradation observed at 100% of reverse voltage when irradiated No failures or degradation observed at MMBD914LT1G 100% of reverse voltage when irradiated o to 1232 MeV Xe (LET = 58.8). Diode 100% of reverse voltage when irradiated No failures or degradation observed at 100% of reverse voltage when irradiated No failures or degradation observed at BAP50-05,215 100% of reverse voltage when irradiated No failures or degradation observed at BAR64-05 E6327 No failures or degradation observed at BAP64-05,215 100% of reverse voltage when irradiated No failures or degradation observed at 100% of reverse voltage when irradiated No failures or degradation observed at SMP1307-004LF 100% of reverse voltage when irradiated No failures or degradation observed at BZX84C47-7-F No failures or degradation observed at Degradation was observed during beam run when biased at 100% of Zener voltage Diode 58.8), but all post-irradiation electrical parameter measurements remained within

As in our past workshop compendia of NASA Goddard Space Flight Center (GSFC) test results, each DUT has a detailed test report available online at radhome.gsfc.nasa.gov [16] and nepp.nasa.gov [17]. The Test Results and Discussion section contains summaries of testing performed on a selection of featured parts.

100% of reverse voltage when irradiated

Degradation was observed during beam

1: (LBNL2017Apr) and irradiated with 1232 MeV Xe (LET =

Super H: (LBNL2017Apr) | beam run while biased at 100% of reverse | 200

run when biased at 100% of Zener voltage

parameter measurements remained within

No failures or degradation observed at 100% of reverse voltage when irradiated

Degradation was observed during beam

58.8), but all post-irradiation electrical

run when biased at 100% of Zener voltage

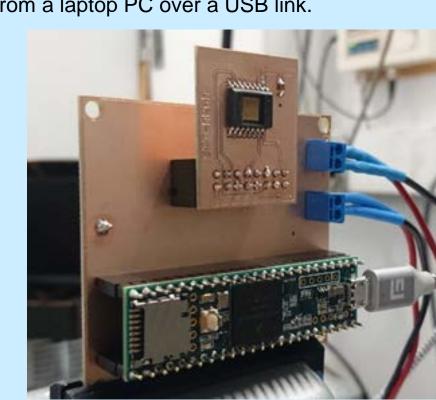
parameter measurements remained within

voltage when irradiated with 1233 MeV Xe

atastrophic failures observed during

o to 1232 MeV Xe (LET = 58.).

Test Results and Discussion


Avalanche Technology's AS008MA12A-C1SC SPnVSRAM

The Avalanche Technology AS008MA12A-C1SC is an 8-Mb serial nonvolatile memory that uses Avalanche's proprietary pMTJ STT-MRAM technology. Samples in a 16-pin SOIC package were provided to NASAtesting program. Testing was conducted by NASA GSFC at the Texas A&M University Cyclotron Facility (TAMU) with a typical set of heavy ions (Table I) obtained with the 15-MeV/amu beam tune.

Table III: Heavy Ion Beams used at TAMU for AS008MA12A-C1SC SPnVSRAM

lon	Energy (MeV/amu)	Energy (MeV)	Range in Si (µm)	Nominal LET in Si (MeV- cm²/mg)	
¹⁴ N	15	210	428	1.30	
⁶³ Cu	15	944	172	19.6	
¹⁰⁹ Ag	15	1634	156	42.2	
¹⁹⁷ Au	15	2954	155	85.4	

commercially-available ARM Cortex-M0 microcontroller board (Fig. 1), with commands from a laptop PC over a USB link

Fig. 1. Microcontroller test board and decapsulated memory device ready for irradiation.

Several test modes were used to identify different single-event effects Static memory testing (both powered and un-powered during irradiation) did not result in any memory cell upsets up to and including a normal-incidence LET of 85.4 MeV•cm²/mg, and a 45-degree irradiation with an effective LET of 120.7 MeV•cm²/mg. Tests were completed to a fluence greater than 1x10⁷/cm².

Tests for single-event latchup (SEL) were conducted at nominal voltage (1.8 V) and elevated voltage (2.0 V) at room temperature, with a fluence of at least 1x10⁷/cm². No single-event latchup events were observed at the highest LET tested (85.4 MeV•cm²/mg). No parts were permanently damaged or degraded during heavy-ion testing.

Single-event functional interrupts (SEFI) were observed at an LET of 1.84 MeV•cm²/mg and greater (Fig. 2). No SEFI were observed at an LET of 1.3

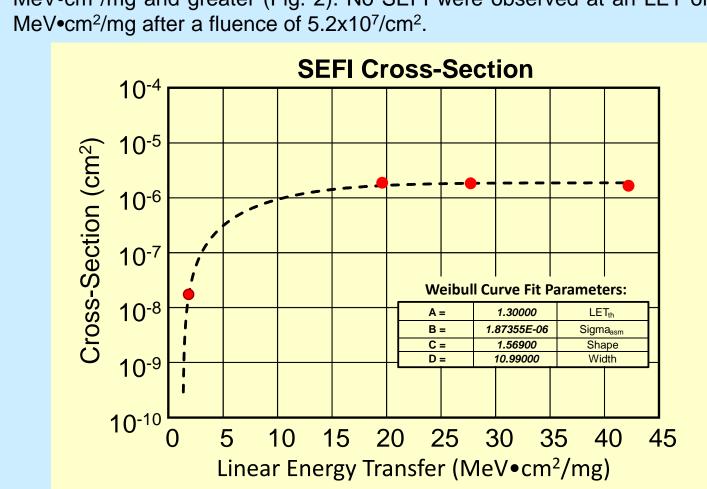


Fig. 2. AS008MA12A-C1SC SPnVSRAM partial-SEFI cross section as a function of LET.

SEFIs presented primarily as large numbers of memory errors, typically present in several, but not all, of the memory's blocks (so-called "partial" SEFI). These errors in the control circuitry were cleared with a power cycle, although no re-programming was necessary (i.e. the underlying memory array was not upset). A SEFI that broke communication with the device was observed at an LET of 42.2 MeV•cm²/mg and a cross-section of 3.2x10⁻⁸cm². The effect was again observed at an LET of 85.4 MeV•cm²/mg, but other runs were completed to 1x10⁷/cm² without any loss-of-communication SEFIs, suggesting an extremely low sensitivity to these events. [19]

evaluating the proton beam offerings at each high-energy facility we have Proton Therapy (MGH), Tri-University Meson Facility (TRIUMF) Northwestern Medicine Chicago Proton Center, California Protons Cancer Therapy Center (formerly Scripps Proton Therapy Center), Mayo Clinic, ProVision Center for Proton Therapy, and the Proton Therapy Center at Cincinnati Children's Hospital. For most of these facilities, the proton energy

Fig. 3 shows the comparison of the measured SEU cross-sections fo each of the facilities. There was no major difference between facilities, so all are suitable options for high-energy protons.

were tested, and 105 MeV was tested in addition to 200 MeV at the Mayo

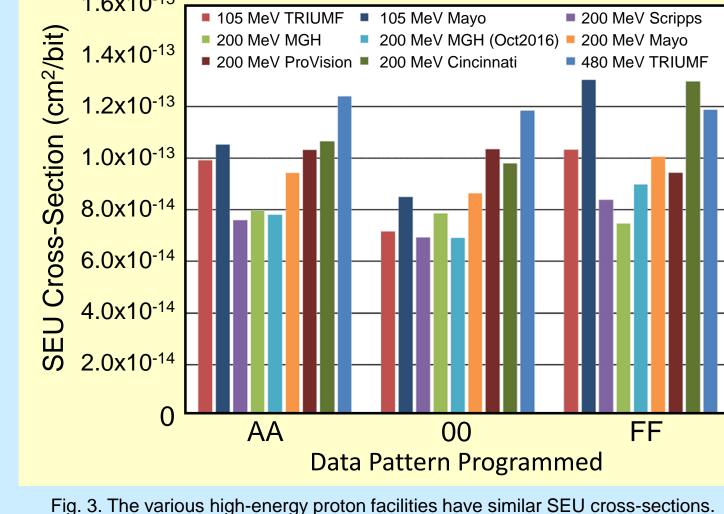


Fig. 3. The various high-energy proton facilities have similar SEU cross-sections.

Summary

mainly commercial devices. It is the authors' recommendation that these data be used with caution. We also highly recommend that lot testing be performed on any suspect or commercial device.

Acknowledgment

This work was supported in part by the NASA Electronic Parts and Packaging (NEPP) Program, and NASA Flight Projects.

The authors gratefully acknowledge members of the Radiation Effects and Analysis Group who contributed to the test results presented here: Hak Kim, Anthony M. Phan, Donna J. Cochran, James D. Forney, Christina M.

Special thanks go to Stephen P. Buchner and Dale McMorrow, Naval Research Laboratory for their excellent support of the laser testing.

References

http://radhome.gsfc.nasa.gov/ radhome/ papers/ HEART08_LaBel.pdf

Massachusetts General Francis H. Burr Proton Therapy Center (MGH), https://www.massgeneral.org/radiationoncology/BurrProtonCenter.aspx.

Northwestern Medicine Chicago Proton Center, https://www.nm.org/locations/chicago-proton-center. California Protons Cancer Therapy Center (formerly Scripps Proton Therapy Center), https://www.californiaprotons.com

and fundamental studies," IEEE Trans. Nucl. Sci., vol 41, pp. 2574-2584, Dec. 1994.

[17-011] Edward P. Wilcox, "Single Event Effects Test of Avalanche Technology's AS008MA12A-C1SC SPnVSRAM," NEPP-TR-2017-Wilcox-17-011-AS008MA12A-

[20] [16-019] Scott Stansberry, Michael Campola, Ted Wilcox, Christina Seidleck, Anthony Phan, "Single Event Effect Testing of the Micron MT46V128M8," [] [17-049] Michael Campola, Edward Wilcox, "Micron MT29F1T08CMHBBJ4 1Tb NAND Flash Memory Single Event Effect Characterization Test Report," https://nepp.nasa.gov, TR-17-049, June 2017.

177-0451 Edward J. Wyrwas. "Proton Irradiation of the 16GB Intel Optane SSD." https://nepp.nasa.gov. TN49014-TR-17-045. Nov. 2017.

3] [TN44754] Melanie Berg, Hak Kim, Anthony Phan, Christina Seidleck, Ken Label, Jonny Pellish, Michael Campola, "Microsemi RTG4 Rev C Field Programmable Gate Array Single Event Effects (SEE) Heavy-ion Test Report," http://nepp.nasa.gov/, TN44754, March 2017 | [15-061] Melanie Berg, Hak Kim, Anthony Phan, Christina Seidleck, Ken Label, Michael Campola, "Xilinx Kintex-UltraScale Field Programmable Gate Array Single Event Effects (SEE) Heavy-ion Test Report," http://nepp.nasa.gov/, TR-15-061-TN45195, Oct 2016. [17-039] Edward Wyrwas, "Proton Testing of nVidia GTX 1050 GPU," http://nepp.nasa.gov/, TR-17-039-TN45745, Apr. 2017.

26] [16-037] Michael J. Campola, "Texas Instruments DRV102 PWM Solenoid/Valve Driver Single Event Effect Characterization Test Report," http://nepp.nasa.gov/, TR-16-[27] [16-036] B. Freeman, M. Campola, "Single Event Effects Test of Analog Devices' AD654 Voltage to Frequency Converter," http://nepp.nasa.gov/, TR-16-036, April 2017.

To be presented by Martha O'Bryan at the 2018 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC), Kona, Hawaii, July 19, 2018.

(17-036)

SBR1U200P1-7

Diodes, Inc.

Diode

Diode

Diode