
1 
 

Global-scale Evaluation of SMAP, SMOS and ASCAT Soil Moisture Products using Triple 1 

Collocation 2 

Fan Chen1,2, Wade T. Crow1, Rajat Bindlish3, Andreas Colliander4, Mariko S. Burgin4, Jun Asanuma5, 3 

and Kentaro Aida5 4 

1 Science Systems and Applications, Inc., Greenbelt, MD, USA 5 

2 USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA 6 

3 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 7 

4 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 8 

5 University of Tsukuba, Tsukuba, Japan 9 

 10 

Abstract 11 

Global-scale surface soil moisture products are currently available from multiple remote sensing platforms. 12 

Footprint-scale assessments of these products are generally restricted to limited number of densely-13 

instrumented validation sites. However, by taking active and passive soil moisture products together with a 14 

third independent soil moisture estimates via land surface modeling, triple collocation (TC) can be applied to 15 

estimate the correlation metric of satellite soil moisture products (versus an unknown ground truth) over a 16 

quasi-global domain. Here, an assessment of Soil Moisture Active Passive (SMAP), Soil Moisture Ocean 17 

Salinity (SMOS) and Advanced SCATterometer (ASCAT) surface soil moisture retrievals via TC is presented. 18 

Considering the potential violation of TC error assumptions, the impact of active-passive and satellite-model 19 

error cross correlations on the TC-derived inter-comparison results is examined at in situ sites using quadruple 20 

collocation analysis. In addition, confidence intervals for the TC-estimated correlation metric are constructed 21 

from moving-block bootstrap sampling designed to preserve the temporal persistence of the original (unevenly-22 

sampled) soil moisture time-series. This study is the first to apply TC to obtain a robust global-scale cross-23 
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assessment of SMAP, SMOS and ASCAT soil moisture retrieval accuracy in terms of anomaly temporal 24 

correlation. Our results confirm the overall advantage of SMAP (with a global average anomaly correlation of 25 

0.76) over SMOS (0.66) and ASCAT (0.63) that has been established in several recent regional, ground-based 26 

studies. SMAP is also the best-performing product over the majority of applicable land pixels (52%), although 27 

SMOS and ASCAT each shows advantage in distinct geographic regions.   28 

 29 

1. Introduction 30 

As a key state variable in hydrological and meteorological modeling systems, the global 31 

observation of soil moisture has become a major priority. Currently, several remote sensing 32 

platforms provide continuous global surface (approximately 0-5 cm) retrievals: the National 33 

Aeronautics and Space Administration (NASA)’s Soil Moisture Active Passive (SMAP, 2015-), 34 

the European Space Agency (ESA)’s Soil Moisture Ocean Salinity (SMOS, 2009-), the European 35 

Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)’s Advanced 36 

SCATterometers (ASCAT, 2007-), and the Japanese Aerospace Exploration Agency (JAXA)’s 37 

Advanced Microwave Scanning Radiometer 2 (AMSR2, 2012-). The accuracy of the satellite 38 

soil moisture retrievals is typically described via their root-mean-squared-error (RMSE; e.g. 39 

Brocca et al. 2010; Jackson et al. 2010; Kerr et al. 2016) or de-biased/unbiased RMSE 40 

(ubRMSE; e.g. Colliander et al. 2017) versus ground-based observations at a footprint-scale. 41 

However, difficulty in obtaining viable estimates of ground truth soil moisture at the satellite 42 

footprint scale has limited past validation activities to a small number of locations (e.g., SMAP’s 43 

core validation sites) and/or discrete time periods (e.g., field campaigns). The broader evaluation 44 

of satellite soil moisture products (across regional or continental scales) is typically based on 45 

comparisons with sparse ground soil moisture networks or modeled datasets (e.g., Paulik et al. 46 

2014; González-Zamora et al. 2015; Piles at al. 2014; Al-Yaari et al. 2014; Polcher et al. 2016; 47 
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Kim et al. 2018). Naturally, such comparisons are unable to provide direct validation metrics 48 

relative to the ground truth, but rather metrics against a chosen reference dataset with unknown 49 

errors at the footprint-scale of satellite retrievals. For example, correlation coefficient metrics 50 

obtained from comparing with point-scale ground observations have been shown to 51 

underestimate the correlation between retrievals and true soil moisture values  (Chen et al. 2017).    52 

Initially designed for obtaining the calibration constants against a reference dataset in satellite 53 

wind speed products, the triple collocation (TC) (Stoffelen 1998) technique provides a solution 54 

to such challenge. In particular, TC can be applied to the estimate error variances of a 55 

geophysical measurement system and has become an important tool for satellite soil moisture 56 

assessments (e.g., Zwieback et al. 2012; Dorigo et al. 2010; Miralles et al. 2010; Draper et al. 57 

2013). However, standard TC applications are limited to only providing relative error metrics. It 58 

requires a reference dataset to be chosen from the three collocated data products, and the 59 

resulting error variances are subject to the multiplicative and additive biases of the reference 60 

dataset (Chen et al. 2017). Recently developed TC-based solution – the Extended Triple 61 

Collocation, or ETC (McColl 2014) – for the Pearson’s correlation coefficient metric, on the 62 

other hand, does not require a reference dataset and yields an absolute estimate of the temporal 63 

correlation between the product under evaluation and the unknown truth. Pearson’s correlation 64 

coefficient is a widely reported metric for satellite soil moisture and an appropriate metric for 65 

summarizing retrieval value in a data assimilation context (Reichle et al., 2008). In this analysis, 66 

we adopt the ETC solution and conduct an assessment and inter-comparison of the SMAP Level 67 

3, SMOS Level 3 and ASCAT Level 2 soil moisture products based on the correlation metric 68 

(R). Until recently, relatively few studies have been conducted to evaluate satellite soil moisture 69 

products at a continental scale (e.g. Draper et al. 2013; Leroux et al. 2013) using TC. To the best 70 
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of our knowledge, this study is the first attempt to apply TC to obtain the footprint-scale 71 

correlation metric for SMAP observations at quasi-global scale, and compare it directly with soil 72 

moisture retrievals from SMOS and ASCAT.  73 

 74 

Our basic strategy for applying TC is to employ soil moisture data triplets comprising a passive 75 

microwave product (SMAP or SMOS), an active remote sensing product (ASCAT), and a land 76 

surface model product. TC is based on a fundamental assumption that each of these products 77 

contain uncorrelated errors. However, recent works have identified non-negligible error 78 

correlation in soil moisture products acquired from active and passive microwave sources 79 

(Gruber et al. 2016b; Pierdicca et al. 2017). This suggests that it is necessary to examine the 80 

impact of violating this assumption on SMAP-ASCAT and SMOS-ASCAT-based TC analyses. 81 

Therefore, we also apply the least-squares quadruple collocation solution (QC, Pierdicca et al. 82 

2015) to estimate the error cross-correlations at over 200 sparse ground observation sites to 83 

further evaluate the robustness of our global TC analysis strategy.  84 

This paper is organized as follows. Section 2 reviews the TC and quadruple collocation (QC) 85 

methodologies and data-processing procedures as well as the use of moving-block bootstrap re-86 

sampling to obtain confidence intervals for TC-derived R. Section 3 describes the remote 87 

sensing, land surface modeling and ground observation datasets used in the analysis. Section 4 88 

presents the QC results at sparse network sites and discusses the sensitivity of the TC analysis to 89 

both non-zero error cross-correlation between active and passive satellite soil moisture products 90 

and our choice of a particular land surface model dataset. Results and discussions of global 91 
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comparison of SMAP, SMOS and ASCAT soil moisture via TC are presented in Sections 5 and 92 

6, respectively. 93 

 94 

2. Methodologies 95 

2.1 Extended Triple Collocation 96 

In soil moisture validation and comparison studies, TC has typically been applied to estimate the 97 

random error variance of a particular soil moisture dataset. In contrast, the extended triple 98 

collocation (ETC) approach (McColl 2014) solves for the correlation between a dataset and the 99 

unknown truth. As in TC, it requires three collocated, independent measurement systems (X, Y, 100 

Z, in our case representing: a passive satellite retrieval, an active satellite retrieval and a model 101 

product, respectively) that describe the same geophysical variable (in this case - average surface 102 

soil moisture of the satellite grid cell, which is approximately 40 x 40 km2). ETC is based on the 103 

following assumptions: 1) all three datasets are linearly related to the true state (T); 2) zero error 104 

cross-correlation exists between X, Y and Z; and 3) zero correlation exists between errors and T 105 

and 4) the stationary of signal and error statistics (Gruber et al. 2016a; Draper et al. 2013; 106 

Zwieback et al. 2012). If these assumptions hold, the correlation between X and the T can be 107 

estimated as 108 

𝑅𝑋 = √
𝜎𝑋𝑌𝜎𝑋𝑍

𝜎𝑋
2𝜎𝑌𝑍

                 (1) 109 

where 𝜎𝑋𝑌 is the covariance of X and Y, and 𝜎𝑋
2 is the variance of X. Analytical details for 110 

deriving (1) from the classic TC method (Stoffelen 1998) can be found in McColl (2014).  111 
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To ensure consistency with the assumption listed above, seasonal signals are commonly removed 112 

from the raw time-series of each product prior to the application of TC (Gruber et al. 2016a; Dorigo 113 

et al. 2010; Su and Ryu, 2015). Here, anomaly time series are generated by removing the average 114 

value of a 30-day moving window centered upon the data point being treated (i.e. from day -14 to 115 

day +15). Given the potential temporally sparse nature of satellite retrievals, a minimum of 3 116 

observations is required in each of the first and second halves of the 30-day window, in addition 117 

to the data point being treated itself. This particular anomaly definition, versus the alternative 118 

definition of deviations from a long-term seasonal climatology, has less stringent requirements 119 

regarding the length of datasets, which is usually the limiting factor in the application of TC in 120 

satellite products. While the removal of low-frequency variability has been shown to improve the 121 

robustness of TC results (Chen et al. 2017), it renders our particular ETC approach insensitive to 122 

(potentially-important) error in low-frequency and/or seasonal soil moisture dynamics. The 123 

implications of this will be discussed below.   124 

ETC-based estimates of correlation are considered viable when: 1) the collocated triple time series 125 

is comprised of at least 50 data points; 2) positive correlation is found between each of the three 126 

input anomaly time-series, and 3) ETC correlation outputs are real and positive for each of the 127 

three datasets. All other ETC correlation estimates are masked. The positive correlation 128 

requirement between input datasets (#2 above) is necessary to avoid ambiguity since ETC is unable 129 

to resolve the sign of the output R values (McColl 2014). This limitation results in the exclusion 130 

of pixels in certain regions where active and passive soil moisture retrievals are negatively 131 

correlated (see additional discussion in Section 5).   132 

2.2 Estimation of error cross-correlation: Quadruple collocation  133 
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As noted above, a potential source of error for the TC analysis is the presence of error cross-134 

correlation (ECC) between the soil moisture datasets, especially between active and passive 135 

remote sensing products. Non-zero ECC violates the underlying TC assumptions and can lead to 136 

biased TC results. In past studies, ECC was typically assumed to be zero between all products 137 

(e.g., Leroux et al. 2013). However,  recent works have revealed the presence of non-zero ECC 138 

between active and passive soil moisture retrievals (Gruber et al. 2016b; Pierdicca et al. 2017). 139 

Therefore, it is prudent to re-examine ECC levels in SMAP-ASCAT and SMOS-ASCAT soil 140 

moisture data pairs utilized here.  141 

The TC algorithm can be extended to include a fourth dataset (i.e., quadruple collocation, or QC) 142 

and the error variances can be estimated with a least squares solution (Pierdicca et al. 2015) with 143 

the same TC assumptions. Furthermore, the zero ECC assumption can be relaxed, and –  on the 144 

condition that only one pair within of the four datasets have non-zero ECC – estimates of ECC 145 

can be obtained from the least-squares solution (Zwieback et al. 2012; Gruber et al. 2016b).  146 

Here we adopt the formulation in Gruber et al. (2016b) to estimate the error cross-correlation 147 

between the active (ASCAT) and passive (SMAP, SMOS) soil moisture datasets and assess the 148 

impact of such cross-correlation on TC results. The QC analysis is conducted at sparse soil 149 

moisture network sites where ground observations can serve as the fourth soil moisture dataset. 150 

The QC formulation also provides estimates of the error variances of each dataset. In certain 151 

cases, such estimates will be more accurate than those obtained from TC since QC can account 152 

for the presence of non-zero ECC within a particular pair of collocated datasets (Yilmaz and 153 

Crow, 2014).  154 
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Given four soil moisture measurement systems X, Y, Z, W, representing a passive remote sensing, 155 

an active remote sensing, a model and point-scale ground observation, respectively, the least-156 

squares solution for the QC problem is given by 157 

𝑦 =

[
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2
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2
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                                       (2) 158 

where Θ is the true soil moisture signal, and  is the multiplicative bias of a given dataset as in 159 

𝑋 = 𝛼𝑋 + 𝛽𝑋Θ + 𝜀𝑋, and  is the zero-mean random error.   160 

And the least squares solution for the parameters in x is given as 161 

𝑥̂ = (𝐴𝑇𝐴)−1𝐴𝑇𝑦                 (3) 162 

Note that this solution enables the TC approach described in section 2.1 to be slightly relaxed. In 163 

particular, non-zero ECC is now allowed in one data pair (here between X and Y, where X is 164 

SMAP or SMOS, and Y is ASCAT). ECC between any other data pairs are still required to be 165 

zero (i.e., 𝜎𝜀𝑋𝜀𝑌
 ≠ 0, and 𝜎𝜀𝑋𝜀𝑍

= 𝜎𝜀𝑋𝜀𝑊
= 𝜎𝜀𝑌𝜀𝑍

= 𝜎𝜀𝑌𝜀𝑊
= 𝜎𝜀𝑍𝜀𝑊

= 0). As in Gruber et al. 166 

(2016b), we consider these conditions generally satisfied in the active-passive-LSM-in situ data 167 

quadruples in this study.  168 
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2.3 Confidence interval from moving block bootstrapping 169 

Using collocated surface soil moisture retrievals from passive (SMAP or SMOS) and active 170 

(ASCAT) sensors and a land surface modeling product, the correlation metric of the three 171 

satellite products (versus an unknown truth) can be estimated via TC at a quasi-global scale. 172 

However, considerable sampling errors are expected in TC results, especially when the length of 173 

the analysis is shortened to accommodate new satellite products (e.g., the two years of SMAP 174 

considered here). Therefore, it is critical to account for sampling uncertainties when making 175 

comparisons between the satellite products.  176 

Here, such uncertainties are quantified via bootstrap re-sampling at each pixel to construct the 177 

confidence interval (CI) of TC estimates. As noted earlier, auto-correlation in time-series will 178 

reduce the effective sample size and thus underestimate the probability that the original bootstrap 179 

confidence interval contains the true statistical property (Zwiers, 1990; von Storch and Zwiers, 180 

1999). Since soil moisture time series typically contain large amounts of temporal auto-181 

correlation, this effect should be considered when generating boot-strapped errors estimates for 182 

soil moisture TC results. Although mean 30-day signals have been removed from the original 183 

time-series, our analysis suggests the resulting anomaly time-series still contains significant first-184 

order autocorrelation (not shown). This impact also applies for correlation estimated by ETC 185 

techniques since the latter is essentially an expansion upon the Pearson’s correlation coefficient 186 

formula from two to three time series members (McColl, 2014). A solution is proposed in 187 

Mudelsee (2002, 2010) where a pair-wise moving block bootstrap (MBB) re-sampling technique 188 

is applied to obtain a robust estimate of the confidence intervals for Pearson’s correlation 189 

coefficient in serially-correlated time-series.  190 
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Here, we have adapted the MBB method introduced in Ólafsdóttir and Mudelsee (2014) for the 191 

bi-variate correlation problem to the triple collocation problem to construct the confidence 192 

interval of the ETC correlation results. In each iteration of the re-sampling procedure, MBB is 193 

applied to draw blocks of data triplets from the original time series samples to form samples that 194 

preserve the temporal persistence of the original data. Block length is determined from the 195 

equivalent autocorrelation coefficient of the three anomaly time-series (i.e., ETC inputs) which is 196 

calculated from individual persistence time, τ, of the three time-series. Persistence times are then 197 

estimated by minimizing the sum of squares: 198 

 𝑆(𝜏𝑋) = ∑ [𝑥(𝑖) − 𝑒𝑥𝑝{−[𝑡(𝑖) − 𝑡(𝑖 − 1)]/𝜏𝑋} ∙ 𝑥(𝑖 − 1)]2𝑛
𝑖=2                                   (4) 199 

where n is the length of the time-series, x(i) is the ith data point (i.e. soil moisture anomaly) and 200 

t(i) is the linear time point (in unit of day) with uneven spacing, which is typical of satellite 201 

retrievals. Note that although the land surface model time-series are evenly spaced with sub-daily 202 

frequency, only the data points that temporally matched to the satellite retrievals are considered 203 

and thereby treated as an unevenly-spaced time series. The equivalent AR(1) autocorrelation 204 

coefficient is given by 𝑎𝑋 = exp (−𝑑/𝜏𝑋), where 𝑑 = [𝑡(𝑛) − 𝑡(1)]/(𝑛 − 1) is the average time 205 

spacing. The autocorrelation coefficient is then bias-corrected to approximate the AR(1) process 206 

with an even time-spacing:  207 

𝑎′𝑋 = [𝑎𝑋 ∙ (𝑛 − 1) + 1]/(𝑛 − 4).               (5) 208 

A joint, bias-corrected equivalent autocorrelation coefficient for the triple collocation analysis is 209 

given by 210 

𝑎′𝑋𝑌𝑍 = (𝑎′
𝑋 ∙ 𝑎′

𝑌 ∙ 𝑎′
𝑍)1/3.               (6) 211 
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 212 

The optimal block length is then estimated as 213 

𝑙𝑜𝑝𝑡 = NINT {[√6 ∙ 𝑎′
𝑋𝑌𝑍/(1 − 𝑎′

𝑋𝑌𝑍
2

)]
2/3

∙ 𝑛1/3}                       (7) 214 

where NINT denotes rounding to the nearest integer. Overlapping blocks of data triplets with the 215 

length of 𝑙𝑜𝑝𝑡 are then extracted from the match-up anomaly time-series and then randomly 216 

drawn with replacement to be concatenated until the original data length is reached (see Figure 1 217 

for an illustration of this procedure). Extra data points in the end of the newly-formed bootstrap 218 

sample are trimmed. The re-sampling procedure is repeated 1000 times in each grid pixel. 219 

Estimated 95% confidence intervals for each correlation coefficient are defined as the range 220 

between 2.5th and 97.5th percentile of the bootstrapped sampling distribution. 221 

 222 

Figure 1. Schematic diagram of moving block bootstrapping for the case 𝑙𝑜𝑝𝑡= 7 applied to a temporally 223 

sporadic time series of available soil moisture triplets. Overlapping data blocks from the original time 224 

series (top) are drawn randomly with replacement and then concatenated to generate a new bootstrap 225 

resample (bottom). 226 

 227 
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3. Data 228 

As discussed above, three satellite surface soil moisture products (acquired between March 31, 229 

2015 and March 31, 2017) are evaluated in this analysis: Level 3 SMAP passive radiometer 230 

retrievals (L3_SM_P, v4-R14010), Level 3 SMOS radiometer retrievals (v300), and Level 2 231 

ASCAT scatterometer retrievals. All three retrieval time series contain retrievals obtained from 232 

both ascending and descending orbits. Details of each product are given below. 233 

3.1 Soil Moisture Active Passive (SMAP) 234 

Launched in January 2015, NASA’s SMAP satellite began continuous science data acquisition 235 

on March 31, 2015 with its L-band (1.41 GHz) radiometer (Entekhabi at al., 2010). The SMAP 236 

L3 data is in the format of global gridded maps of daily composites of the SMAP Level 2 Passive 237 

Soil Moisture (L2_SM_P) ascending/descending swath data, and is posted on a global cylindrical 238 

36 km Equal-Area Scalable Earth, version 2 (EASEv2) grid. The validated SMAP L2/3 soil 239 

moisture product is based on the V-polarization single-channel (SCA-V) retrieval algorithm 240 

(Chan et al. 2016). Data screening is based on the soil moisture retrieval quality flag and only 241 

those flagged as “recommended for retrieval” are considered in this analysis. The retrieval 242 

quality flag is determined from a number of surface and retrieval conditions which can be found 243 

in Chan et al. (2016) and Chan and Dunbar (2015). Soil moisture retrievals from the ascending 244 

(6 PM LST) overpasses are now included in the SMAP Level 2/3 passive version 4 data 245 

products. Validation of the ascending (PM) retrievals indicate that it also meets the mission 246 

requirement of 0.04 m3/m3 unbiased root mean square error (ubRMSE), but with a small 247 

degradation compared to the descending (AM) retrievals (Jackson et al. 2016).  248 

3.2 Soil Moisture Ocean Salinity (SMOS) 249 
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ESA’s SMOS satellite was launched in November 2009 and measures L-band microwave 250 

emission (1.400-1.427 GHz) with equatorial ascending/descending overpasses at 6 AM/PM local 251 

solar time and a 3-day revisit period at the equator (Kerr et al. 2001). The SMOS soil moisture 252 

retrieval algorithm can be found in Kerr et al. (2013). The SMOS Level 3 (v300) soil moisture 253 

product used here is generated on a 25-km EASEv2 grid (Brodzik and Knowles, 2002) available 254 

through the Centre Aval de Traitement des Données (CATDS) (http://www.catds.fr). In this 255 

study, the SMOS L3 soil moisture data was re-gridded to the SMAP 36 km-EASEv2 grid by 256 

bilinear interpolation. Data were screened primarily by the SMOS Data Quality indeX (DQX), 257 

which takes into account the error in the retrieval parameters and the Level 1 brightness 258 

temperatures (Kerr, et al. 2013). DQX has been applied to screen SMOS soil moisture retrievals 259 

in several studies with thresholds varying between 0.045 and 0.07 (e.g. Polcher et al. 2016; Al-260 

Yaari et al. 2014; Pierdicca et al. 2013). Here, pixels with DQX > 0.07 m3/m3 or covered by 261 

snow or ice were removed.. A stricter screening threshold of 0.04 m3/m3 for DQX is also applied 262 

to examine the impact on the overall performance SMOS relative to SMAP and ASCAT (see 263 

Section 5). The impact of varying this threshold on key results will be discussed below. 264 

However, unless otherwise noted, satellite comparison results shown below are based on the 0.07 265 

m3/m3 DQX threshold to maximize the temporal and spatial coverage of the analysis.  266 

3.3 Advanced Scatterometer 267 

The Advanced Scatterometer (ASCAT) sensor onboard the Meteorological Operational-B 268 

(MetOp-B) satellite measures C-band (5.3 GHz) radar backscatter since September 2012, with 269 

25-34 km spatial resolution and equatorial ascending/descending overpasses at 9:30 PM/AM 270 

local solar time and a revisit frequency of 3 days. The ASCAT Level 2 (v5) soil moisture index 271 

product utilized here is based on the change-detection algorithm developed by Vienna University 272 



14 
 

of Technology (TU Wien; see Wagner et al. 1999; Naeimi et al. 2009) obtained from 273 

EUMETSAT Earth Observation Portal (EOP). As conversion to volumetric soil moisture unit is 274 

not required in calculation of correlation coefficient, potential error due to inaccurate global 275 

porosity dataset is avoided here. Pixels were masked if the probability of snow, frozen ground 276 

and estimated retrieval error are greater than 50%. The ASCAT L2 soil moisture index data are 277 

available at 12.5-km grid resolution and were re-sampled onto the SMAP 36 km-EASEv2 grid 278 

through inverse-distance-weighting interpolation.  279 

3.4 Land surface modeling products 280 

Two operational global land surface modeling (LSM) soil moisture datasets are used in this 281 

analysis. The first is the operational analysis layer-1 (0-7 cm) volumetric soil moisture field from 282 

the European Centre for Medium Range Weather Forecasts (ECMWF) H-TESSEL (Hydrology-283 

Tiled ECMWF Scheme for Surface Exchanges over Land) land-surface scheme (Balsamo et al. 284 

2009). The operational soil moisture analysis product data is produced by ECMWF’s Land Data 285 

Assimilation System by the assimilation of 2-m air temperature and relative humidity 286 

observations (Drusch et al. 2009; de Rosnay et al. 2012). The ECMWF soil moisture analysis 287 

data is available at 00, 06, 12 and 18Z hours and in a N640 reduced Gaussian grid. Here, it was 288 

re-gridded to the nearest 36-km EASEv2 grid using a nearest neighbor approach. 289 

 290 

The second LSM soil moisture product utilized here is the so-called SMAP Nature Run, version 291 

3 (NRv3), available at 3-hourly interval and 9-km EASEv2 grid and were aggregated to 36-km 292 

EASEv2 grid by spatial averaging. The NRv3 data were generated with an early version of the 293 

SMAP Level 4 Surface and Root Zone Soil Moisture (L4_SM) algorithm by the NASA Goddard 294 
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Space Flight Center (GSFC) Global Modeling and Assimilation Office (Reichle et al. 2016), 295 

which was applied in a model-only configuration using a single ensemble member, without 296 

perturbations, and without the assimilation of SMAP observations.   297 

 298 

The re-sampling methods for the satellite and LSM datasets were each chosen considering the 299 

features of both source and target grids (i.e. SMAP EASEv2 grid). For ECMWF, the average 300 

grid size is close to the target grid size and therefore nearest-neighbor type simple grid 301 

transformation is appropriate given that it avoids potential interpolation artifacts. For NRv3 the 302 

source grid is perfectly nested within the target grid so simple averaging is ideal. The choice of 303 

re-sampling method for SMOS and ASCAT has been made with close attention to limiting 304 

factors and after discussion with data providers. A bilinear interpolation was found to produce 305 

fewest artifacts for SMOS with its 25-km EASEv2 grid. ASCAT’s grid resolution is higher (12.5 306 

km) and the original data was provided in time-ordered format; an inverse-distance-weighting 307 

interpolation was found to be most accurate.  308 

 309 

3.5 Sparse network ground observations 310 

 311 

In order to verify aspects of our ETC analysis (see Section 4), two years (3/31/2015 – 3/31/2017) 312 

of ground soil moisture measurements were obtained from various sparse networks (Table 1) and 313 

applied in a QC analysis (see Section 4 below). These networks typically provide one point-scale 314 

measurement per satellite footprint at approximately 5-cm depth, except for the COsmic-ray Soil 315 

Moisture Observing System (COSMOS) and PBO H2O/GPS networks. The cosmic-ray neutron 316 

detectors (Zreda et al., 2008; 2012) in the COSMOS network measure soil moisture have a 317 
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footprint radius varying between ~130 to 240 meters and a dynamic penetration depth of 318 

between ~15 to 83 centimeters (Kӧhli et al. 2015).  The PBO H2O/GPS network utilizes Global 319 

Positioning System (GPS) receivers that record temporal changes in the signal-to-noise 320 

characteristic of GPS reflectometry data to estimate changes in soil moisture with a sensing 321 

depth of 2.5 cm or less (Chew et al. 2014) and a sensing area of approximately 120 m2 per 322 

satellite track (Larson and Nievinski, 2013). Multiple tracks are combined to produce a daily 323 

average soil moisture value with the aggregate sensing area of approximately 1000 m2. Except 324 

for the GPS network, hourly soil moisture measurements are generally available for all networks.  325 

 326 

Table 1. Sparse networks providing ground measurements of soil moisture. 327 

Network Instrument Region Number of 

stations 

Reference 

Soil Climate Analysis Network 

(SCAN) 

Hydra Probe USA 71 Shaefer et al. 2007 

U.S. Climate Reference 

Network (USCRN) 

Hydra Probe II USA 44 Bell et al. 2013 

Oklahoma Mesonet Campbell Scientific 229-L Oklahoma, USA 84 Illston et al. 2008; Scott et 

al. 2013 

COsmic-ray Soil Moisture 

Observing System (COSMOS) 

cosmic-ray soil moisture probe USA, Europe, 

Africa, Australia 

23 Zreda et al., 2008, 2012 

PBO H2O (GPS) Global Positioning System (GPS) 

receivers 

Western USA 28 Larson et al. 2008 

SMOSMANIA ThetaProbe ML2X France 8 Calvet et al. 2007 

Pampas ThetaProbe ML2X Argentina 8 
 

Mongolia Grasslands Time Domain Reflectometry 

(TDR) probes 

Mongolia 5 Kaihotsu et al. 2009 

 328 
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Figure 2 shows the location of the ground observation sites used in this study. Note that some of 329 

the stations were missing in certain subsequent figures due to the limited availability of 330 

collocated satellite observations.  331 

 332 

Figure 2. Location of ground observation sites (N=271) from sparse networks. 333 

 334 

4. Validation of global TC approach 335 

Prior to the global application of TC, we will validate aspects of the approach using ground-336 

based observations acquired at the sparse networks shown in Figure 2. For example, it is often 337 

assumed that satellite retrievals obtained from active and passive sensors are free from error 338 

cross-correlation (ECC). As a result, the data triplets applied  here consist of an active product 339 

(ASCAT), a passive product (SMOS or SMAP) and a land surface model product (ECMWF or 340 

NRv3). However, given the active-passive ECC discovered in a recent studies, it is necessary to 341 

investigate the ECC between the proposed SMAP-ASCAT and SMOS-ASCAT combinations in 342 

TC and its potential impacts on the TC-based satellite comparisons.  343 
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This investigation is made possible by adding point-scale (pts) soil moisture observations 344 

obtained at sparse networks sites (Fig. 2) into the data triplets, to obtain the data quartets [pts, 345 

SMAP, ASCAT, ECMWF] and [pts, SMOS, ASCAT, ECMWF]. Applying the least-square 346 

solution for quadruple collocation in (3) to these quartets, and assuming that non-zero ECC 347 

exists only between the active and passive soil moisture retrievals, allows us to calculate the 348 

SMAP-ASCAT and SMOS-ASCAT ECC’s across the ground sites. As shown in Fig. 3 these 349 

two distributions are quite similar. That is, most sampled ECC’s are positive with a median of 350 

0.19 [-] (SMAP-ASCAT) and 0.15 [-] (SMOS-ASCAT) and an interquartile range between 0 and 351 

~0.35 [-].  352 

Once estimated, the impact of using of such non-zero ECC on TC results can be assessed. To this 353 

end, ASCAT R values obtained from both SMAP- and SMOS-based QC or TC analyses are 354 

averaged across all sparse sites. Since QC-generated R value takes into account the possibility of 355 

non-zero SMAP-ASCAT and SMOS-ASCAT ECC’s, it is taken as a reference to evaluate the 356 

TC results. On average, TC-estimated R exhibited a slight positive bias compared with 357 

corresponding QC results, with average bias values of 0.06 and 0.05 [-] for SMAP and SMOS, 358 

respectively. Average bias for ASCAT R is 0.07 (obtained by SMAP-based TC) and 0.12 359 

(SMOS-based TC). However, since this bias is comparable and positive for all three products, 360 

the transition from QC to TC is expected to have small net global impact on product-to-product 361 

differences. See below for additional discussion. 362 
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 363 

Figure 3. Distribution of ECC between SMAP-ASCAT and SMOS-ASCAT pairs estimated via the 364 

application of QC at sparse sites listed in Fig. 2. The upper and lower bounds of the boxes indicate 25th 365 

and 75th percentiles respectively and the red line in the box indicates the median. Whiskers extending 366 

from the 25th and 75th percentiles to represent 1.5 times the interquartile range.  367 

 368 

In the TC and QC analyses above we also assume no error cross-correlation between the model 369 

and satellite products, which may not be true in all cases. For example, the SMOS soil moisture 370 

retrieval algorithm uses the ECMWF forecast temperature fields as dynamic auxiliary data input 371 

to obtain the effective soil temperature (Kerr et al. 2013), leading to potential ECC between the 372 

two soil moisture products. Likewise, the NASA GEOS-5 soil temperatures used in the SMAP 373 

L2_SM_P soil moisture retrieval algorithm are derived using the same GEOS-5 forward 374 

processing system that also provides the surface meteorological forcing (except precipitation) for 375 

generating NRv3. Therefore, potential ECC between SMAP and NRv3 is also of concern. An 376 

earlier study suggests small amounts of anti-correlation may exist between SMAP and NRv3 soil 377 

moisture errors that could cause slight underestimation of SMAP R when both datasets are used 378 

in a TC analysis (Chen et al. 2017). To fully address the impact of this issue on our current 379 
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study, the impact of ECC on the relative evaluation of the three satellite products is examined 380 

here via both QC and TC.  381 

Figure 4 summarizes these results. In particular, the first and second rows of Figure 4 plot the 382 

difference in correlation values (R) between the satellite pairs obtained from TC using both 383 

ECMWF (a-c) and NRv3 (d-f) at the sparse sites. The third row (g-i) shows the ECMWF-based 384 

QC results of R. Strong similarity in the shape of the histogram, and the values of mean R (see 385 

dashed vertical lines) suggest that the net mean impact of potential ECC between model and 386 

passive soil moisture products is small. Furthermore, while non-zero active-passive ECC impacts 387 

absolute TC-based R slightly, it has very little net impact on relative R differences observed 388 

between SMAP, SMOS and ASCAT (compare the first and second rows against the third row in 389 

Fig. 4).  390 

 391 
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Figure 4. Comparison of differences in SMAP, SMOS and ASCAT correlation coefficients (R) obtained 392 

from TC (a-f) and QC (g-i) at ground locations shown in Fig. 2. In the vertical axes, “psv” refers to 393 

passive satellite products, (SMAP or SMOS), “pt” refers to point-scale ground observations. The vertical 394 

dashed lines indicate the mean R for each histogram. “N” refers to the number of stations used in each 395 

subplot. 396 

 397 

In addition to assessing the impact of ECC on the relative global bias of TC-based R distributions 398 

(as in Fig. 3), it is useful to assess its impact on the spatial pattern of R differences observed 399 

between satellites (R). Since sparse network observations are not spatially dense enough to 400 

yield continuous imagery (even after interpolation), we are restricted to the use of scatter plots 401 

when examining spatial consistency.  402 

The spatial robustness of R is examined via scatterplots comparing results obtained when 403 

utilizing different source of LSM soil moisture (Fig. 5) and QC versus TC analysis (Fig. 6). 404 

While significant sampling noise is evident, the general one-to-one correspondence suggested in 405 

Figures 5 and 6 suggest that spatially patterns present in R are relatively robust to the use of 406 

competing LSM soil moisture products and the presence of ECC (accounted for in QC results but 407 

neglected in TC). While good agreement in the SMAP-SMOS R and SMAP-ASCAT R is 408 

observed in both cases (Fig. 5, 6), larger scatter is present in SMOS-ASCAT R (Fig. 5c and 6c). 409 

This is likely due to the tendency for SMOS and ASCAT soil moisture products to exhibit 410 

relatively lower R, and thus relatively higher sampling uncertainty effects for R differences, 411 

than SMAP-based results (see additional discussion in Section 5).  412 



22 
 

Therefore, across the sparse site locations in Fig. 2, relative inter-comparisons between various 413 

satellite-based soil moisture products are generally insensitive to both our choice of the 414 

collocation method (QC vs. TC) and a particular land model (ECMWF vs. NRv3).  415 

 416 

 417 

Figure 5. Comparison of R differences (R) between SMAP, SMOS and ASCAT soil moisture retrievals 418 

obtained from NRv3- and ECMWF-based TC analyses. Subplots a), b) and c) include common data 419 

points shown above in Fig. 4a and 4d, Fig. 4b and 4e, and Fig. 4c and f, respectively.  420 

 421 

Figure 6. Comparison of R differences (R) between SMAP, SMOS and ASCAT soil moisture retrievals 422 

obtained from TC and QC analyses. Subplots a), b) and c) include common data points shown above in 423 

Fig. 4a and 4g, Fig. 4b and 4h, and Fig. 4c and i, respectively. 424 

 425 

5 Global triple collocation 426 
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QC results at ground measurement sites in Section 4 indicate that neither ECC between 427 

SMAP/SMOS and ASCAT nor ECC between the land surface model and SMAP or SMOS has a 428 

discernible impact on the inter-comparison of R results for SMAP, SMOS and ASCAT. Hence 429 

our strategy for a quasi-global application of TC using either a [SMOS-ASCAT-ECMWF] or 430 

[SMAP-ASCAT-ECMWF] triplet is believed to be robust. Figure 7a plots estimated R against 431 

true footprint surface soil moisture for SMAP, SMOS and ASCAT obtained from a TC[SMAP-432 

ASCAT-ECMWF] (Fig.7 a, c) and TC[SMOS-ASCAT-ECMWF] (Fig. 7e) analysis. In 433 

particular, note that ASCAT results in Figure 7c are based on a TC[SMAP-ASCAT-ECMWF] 434 

analysis. Similarity of the ASCAT R results between the SMAP-based and SMOS-based TC 435 

analyses is shown in Fig. 8. Figures 7b, 7d and 7c show the total width of the corresponding 95% 436 

confidence interval generated from a 1,000-member moving-block bootstrap re-sampling (see 437 

Section 2.3). The global distributions of TC-based R results are also summarized in Fig. 8. 438 
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 439 

Figure 7. Quasi-global image of TC-based R [-] (single run, without bootstrap re-sampling) for SMAP, 440 

ASCAT and SMOS (left column: subplots a, c, e) and total width of the 95% confidence interval (‘CI’, 441 

right column: subplots b, d, f) derived from a 1,000-member bootstrap sampling.  Subplots a) – d) are 442 

based on a [SMAP-ASCAT-ECMWF] triplet. Subplots e) - f) are based on a [SMOS-ASCAT-ECMWF] 443 

triplet. 444 

 445 

Among the three satellite products, SMAP demonstrates the best overall performance, achieving 446 

excellent (> 0.8 [-]) R over the mid-latitudes of North America and Europe, as well as in 447 

southeastern Africa, India and the eastern half of Australia. Relatively good correlations (> 0.5 448 
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[-]) are found mostly elsewhere, except for parts of northern China/Mongolia and high-latitude 449 

areas of Russia where retrievals are temporally scarce due to the extended cold season.  450 

 451 

Also retrieving from a passive radiometer, SMOS demonstrates a similar R pattern as SMAP, but 452 

the area of high correlation shrinks considerably in North America, Europe and Africa. SMOS 453 

also has less coverage than SMAP in the high latitudes of northern hemisphere and Asia, where 454 

correlations are relatively poor. On the other hand, SMOS has better spatial coverage and 455 

exhibits good correlations across Australia.  456 

 457 

ASCAT presents moderate (~0.5 – 0.8 [-]) correlations in most available land pixels, and 458 

achieves higher values only in limited regions. However, higher ASCAT R are found in 459 

Northeastern China, where both SMAP and SMOS are out-performed by ASCAT. The 95% 460 

confidence interval (CI) (Fig. 7b, d, f) indicate relatively narrow (mostly < 0.2 [-]) ranges from 461 

Monte-Carlo simulation (i.e., small uncertainty in North America, Europe and Australia for 462 

SMAP, ASCAT and SMOS). Larger uncertainties are found in the high latitudes, tropical Africa 463 

and India, where retrieval is hindered by frequently frozen ground or high biomass. Uncertainties 464 

for SMOS are overall greater than SMAP and ASCAT over Argentina, but are smaller in South 465 

Africa.  466 
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 467 

Figure 8. a) Distribution of correlation coefficients in common grid pixels (N=16,332) where both sets of 468 

single-run TC analyses (i.e., [SMAP/ASCAT/ECMWF] and [SMOS/ASCAT/ECMWF]) are available. 469 

See Fig. 3 caption for boxplot descriptions. b) Scatterplot comparison of ASCAT R obtained via SMAP- 470 

and SMOS-based TC. 471 

The distribution of TC-estimated correlation values obtained globally illustrates the overall 472 

superiority of SMAP (median of ~0.8 [-]) to SMOS and ASCAT (median of ~0.7 [-]) (Fig. 8a). 473 

SMAP also presents the narrowest spread with most of its R values above 0.40 [-]. SMOS shows 474 

the largest spread and relatively greater number of lower values compared to SMAP and 475 

ASCAT. Note the ASCAT R values obtained from SMAP- and SMOS-based TC analyses are 476 

highly consistent in terms of both statistical distributions (Fig. 8a) and point-by-point 477 

comparisons (Fig. 8b). This consistency lends further support on the overall robustness of our TC 478 

approach. In particular, it suggests that the impact of non-zero ECC is nearly identical for 479 

ASCAT R results derived from the [SMAP-ASCAT-ECMWF] and [SMOS-ASCAT-ECMWF] 480 

triplets, and it is appropriate to simply average ASCAT R estimated from each triplet for 481 

comparison against SMAP and SMOS. This approach is applied later when the three remote 482 

sensing products are compared at the same time. Global-averaged R obtained for SMAP, SMOS 483 
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and ASCAT (averaged from SMAP- and SMOS-based TC) retrievals over common pixels are 484 

0.76, 0.66 and 0.63, respectively. 485 

 486 

 487 

Figure 9. Comparison of TC-estimated correlation coefficients between the satellite retrieval products. 488 

Color shade indicates the product that obtains higher R in more than 95% of the bootstrap re-sampling 489 
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runs in a given grid cell. All areas of non-significant differences are masked. Plotted results are based on 490 

the following triplets: a) [SMAP-ASCAT-ECMWF] (for SMAP) vs. [SMOS-ASCAT-ECMWF] (for 491 

SMOS); b) [SMAP-ASCAT-ECMWF] (for SMAP and ASCAT); and c) [SMOS-ASCAT-ECMWF] (for 492 

SMOS and ASCAT).  493 

 494 

As noted in Section 4, it is likely that R values in Figures 8 and 9 are uniformly biased high (on 495 

the order of 0.05 to 0.10 [-]) due to low amounts of ECC in SMAP-ASCAT and SMOS-ASCAT 496 

pairs. However, relative R comparisons between products are expected to be more robust. 497 

Qualitative comparisons between the satellite products are presented in Fig. 9, in which only 498 

pixels with 95% significance of comparison are shown. Superiority at 95% significance is 499 

achieved when one product has higher R value in more than 95% of the bootstrap re-samples. 500 

Each bootstrap replicate is treated as an independent sample and the ith sample TC result for 501 

SMAP is compared with the ith sample result for SMOS. In this way, approximately two-thirds 502 

of the pixel-wise R differences are identified as being significant (see Table 2). 503 

The two L-band passive soil moisture products are compared in Fig. 9a. SMOS out-performs 504 

SMAP in areas of the Western United States, Southern Argentina, Central Asia and Eastern 505 

Australia, but ‘SMAP better’ pixels dominate the rest of the globe. Globally, the SMAP 506 

correlation is significantly higher than SMOS in 47% of the land pixels where comparisons are 507 

available, while SMOS is significantly higher in 14% of the pixels (Table 2). In areas of 508 

generally strong RFI pollution (e.g., Europe), the aggressive RFI mitigation efforts applied to 509 

SMAP retrievals (Mohammed et al. 2016; Johnson et al. 2016; Piepmeier et al. 2017) may 510 

explain their superior performance versus SMOS.  511 
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The relative performance of SMAP versus SMOS could conceivably be impacted by (somewhat 512 

arbitrary) decisions regarding data flagging and threshold for estimated quality measure. Here, 513 

the sensitivity of TC results to the SMOS data screening rules is examined by experimenting 514 

with a stricter DQX threshold (0.04 m3/m3). Currently a less-stringent SMOS DQX threshold (≤ 515 

0.07 m3/m3) is applied in order to include more retrievals and increase the sample size for TC. As 516 

suggested in Table 2, more than 5000 pixels (or 14.4%) were removed by applying a DQX = 517 

0.04 m3/m3 threshold in the TC[SMOS-ASCAT-ECMWF] analysis. Results show that the 518 

default threshold (DQX = 0.07 m3/m3) leads to a slight increase in the 'SMAP better' pixel 519 

classification relative to the DQX = 0.04 m3/m3 case (which favors SMAP in ~7% of all the 520 

commonly available pixels); however, it does not reduce the frequency of 'SMOS better' pixels 521 

as much (only ~2% pixels affected). In addition, only 0.3% of the common pixels change from a 522 

'SMOS better' to a 'SMAP better' category when the DQX threshold is relaxed from 0.04 m3/ m3 523 

to 0.07 m3/ m3. Therefore, our default DQX threshold results in only a small negative impact on 524 

SMOS performance relative to SMAP.  525 

C-band active scatterometer retrievals from ASCAT are out-performed by SMAP in most areas 526 

except for Northeastern China, Southern Argentina and Southwestern Australia, where ASCAT 527 

retrievals demonstrate higher R (Fig. 9b). ASCAT R is significantly higher than SMAP R in only 528 

14% of the pixels where TC results are available, while SMAP is significantly better than 529 

ASCAT at more than 50% of the available global land pixels. Note that both SMOS and ASCAT 530 

data used here were subject to processing errors due to grid transformation (to the SMAP native 531 

grid), which may cause slight under-performance and benefit SMAP in these comparisons. 532 

However, the slight global superiority of SMAP relative to SMOS is consistent with SMAP 533 

validation results at core validation sites (Chan et al. 2016). 534 
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The SMOS-ASCAT comparison shows a relatively even number of pixels being superior.  535 

SMOS correlation is significantly higher in most of United States, Central Asia and eastern 536 

Australia, whereas ASCAT is better in most of Northeastern China, Western Europe (areas 537 

SMOS suffers severely from RFI contamination), Argentina, and Western Australia. Considering 538 

both products being extensively validated and relatively mature, the comparison in Fig. 9c 539 

suggests that distinctive strength in each product has been firmly established in specific regions. 540 

The spatial pattern of these comparisons is largely consistent with Al-Yaari et al. (2014), which 541 

compared SMOSL3 and ASCAT with the Modern-Era Retrospective analysis for Research and 542 

Applications (MERRA-Land) surface soil moisture, except in Western Australia and Argentina 543 

where SMOS is found to correlate better with MERRA-Land than ASCAT.    544 

Table 2. Pair-wise comparisons between TC-estimated correlation coefficients for various satellite 545 

products. The significance of differences is assessed using a 95% confidence threshold and the boot-546 

strapping approach described in Section 2.3. Percentages are out of all global land pixels with viable TC 547 

estimates (see Section 2.1).  548 

  SMAP higher SMOS higher No. pixels 

  sig. non-sig. sig. non-sig.   

SMAP vs. SMOS* 47% 21% 14% 17% 28294 

SMAP vs. SMOS** 40% 23% 17% 20% 24614 

  SMAP higher ASCAT higher   

SMAP vs. ASCAT 53% 19% 14% 14% 39181 

  SMOS higher ASCAT higher   

SMOS* vs. ASCAT 35% 18% 29%  18% 36520 

SMOS** vs. ASCAT 41% 19% 23% 17% 31264 

* DQX ≤ 0.07 m3/m3; ** DQX ≤ 0.04 m3/m3 549 
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 550 

 551 

 552 

Figure 10. The satellite product (SMAP, SMOS or ASCAT) with the highest single-run TC-based 553 

correlation coefficient.  554 

 555 

A map showing the best-performing satellite product is presented in Fig. 10. Note that regions 556 

with dense vegetation are largely masked due to a lack of successful retrievals. Likewise, in arid 557 

regions such as the Sahara Desert and Great Basin Desert, earlier studies have revealed poor or 558 

even negative correlation between active and passive products (de Jeu et al. 2008; Pierdicca et 559 

al. 2013; Burgin et al. 2017). This limits the area over which TC can be performed due to the 560 

masking of pixels where negative mutual correlation exists among the input datasets (see Section 561 

2.1). As indicated above, ASCAT R values obtained from SMAP- and SMOS-based TC analyses 562 

are averaged for comparison. Overall, SMAP and SMOS are superior to ASCAT in most areas of 563 

North America, Europe, Southern Asia and Eastern Australia. The significant overlap of 564 
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geographic regions where both passive satellites excel is generally consistent with the high level 565 

of correlation between SMAP and SMOS found earlier by Burgin et al. (2017). ASCAT 566 

generally performs better than SMAP and SMOS across high-latitude areas of Eastern Asia, parts 567 

of South America (mainly Argentina) and Southwestern Australia. As in Fig. 9, SMOS has 568 

higher R than SMAP in the Western United States, Central Asia and most inland pixels of 569 

Eastern Australia. Overall, SMAP ranks highest in 52% of the pixels with viable TC results (see 570 

Section 2.1) whereas SMOS and ASCAT each does in 24% of these pixels.  571 

 572 

6. Summary 573 

In this analysis, a global assessment and comparison of SMAP (L2 passive), SMOS (L3) and 574 

ASCAT (L2) surface soil moisture products is performed based on the correlation metric (R) 575 

obtained via triple collocation (TC). In order to produce robust TC results, R is estimated 576 

following removal of low-frequency variability in the soil moisture time series and therefore 577 

reflects the R of soil moisture anomalies relative to a 30-day moving temporal average. Given 578 

that low-frequency error sources have been previously identified in certain remotely-sensed soil 579 

moisture products (Wagner et al., 2014), this focus on solely high-frequency noise represents a 580 

limitation in our approach. Nevertheless, sensitivity experiments suggest that our global TC 581 

results are relatively insensitive to changing the size of the moving window from 30 to 60 days 582 

(not shown).  583 

In addition, when comparing satellite products, it is critical to account for the sampling 584 

uncertainties due to sparse temporal availabilities or suboptimal retrieval conditions. To this end, 585 

a moving-block bootstrap re-sampling approach, with emphasis on preserving the temporal 586 
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properties of the original soil moisture time series, was applied at each grid pixel to construct the 587 

confidence interval for TC estimates. The re-sampled distribution of correlation estimates is then 588 

used to obtain the significance of TC-based R differences between SMAP, SMOS and ASCAT 589 

soil moisture retrieval products.   590 

Concern about the violation of TC assumption due to error cross-correlations between active-591 

passive observations and between satellite and model products is addressed via a quadruple 592 

collocation (QC) analysis conducted within available sparse network sites (Fig. 2). Slight 593 

positive error cross-correlation is found to exist between ASCAT and both SMAP and SMOS 594 

which suggests that TC-estimated R for the three satellite-based products may be positively 595 

biased. However, since this bias is small and approximately equal for all three products, the 596 

relative evaluation against each other changes only slightly from QC to TC. Results also indicate 597 

limited impact associated with potential satellite-model error cross-correlations. Recent findings 598 

by Pierdicca et al. (2017) using a novel extended QC algorithm and 15 months of satellite and 599 

model data reveals weak SMAP-SMOS ECC that is lower than the SMAP-ASCAT ECC found. 600 

Such findings suggest the  further potential of  using SMAP and SMOS together in TC in future 601 

analyses. Finally, the sensitivity of SMOS TC results to the specification of the DQX threshold is 602 

shown to be low. 603 

To the best of our knowledge, this study is the first to present a global-scale triple collocation 604 

analysis that compares the footprint-scale correlation metric of SMAP with SMOS and ASCAT 605 

soil moisture products. Results suggest that, out of these three products, SMAP has the highest 606 

global average R (0.76, SMOS: 0.66, ASCAT: 0.63) and is the superior product for the majority  607 

(52%) of global land pixels with a viable TC result. This finding is consistent with several recent 608 

validation studies (e.g. Kumar et al. 2017; Montzka et al. 2017; Pierdicca et al. 2017; Kim et al. 609 
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2018). For example, using information theory-based metrics, SMAP has also been found to 610 

provide higher information content than other microwave satellite soil moisture products (Kumar 611 

et al. 2017). Likewise, in a validation study applying both standard validation methods and triple 612 

collocation at footprint-scale soil moisture measurements from the Cosmic Ray Neutron Probes 613 

(CRNP, including some of the COSMOS stations used here) across five continents, SMAP 614 

outperformed other satellite products including AMSR2, SMOS and ASCAT (Montzka et al. 615 

2017). Nevertheless, each of the three satellite retrieval products (SMAP, SMOS and ASCAT) 616 

were found to be superior (to the other two) in specific global land regions. Therefore, the global 617 

inter-comparison maps in Figures 9 and 10 provide useful information for regional-scale 618 

applications such as the choice of dataset for assimilation into rainfall-runoff models.   619 

In closing, it should be noted that all products considered here are subject to frequent re-620 

processing and algorithm improvements. For example, a new global daily SMOS SM product -- 621 

the SMOS-INRA-CESBIO (SMOS-IC) product was recently released and shown to yield 622 

generally higher correlations versus ground observation versus the v300 SMOS Level 3 soil 623 

moisture product considered here (Fernandez-Moran et al., 2017). Comparable enhanced SMAP 624 

soil moisture products are likely to arise in the foreseeable future. Therefore, the cross evaluation 625 

efforts described here are, in reality, an on-going effort requiring updating as improved products 626 

are released. 627 
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resample (bottom). 833 

Figure 2. Location of ground observation sites (N=271) from sparse networks. 834 

Figure 3. Distribution of ECC between SMAP-ASCAT and SMOS-ASCAT pairs estimated via the 835 

application of QC at sparse sites listed in Fig. 2. The upper and lower bounds of the boxes indicate 25th 836 

and 75th percentiles respectively and the red line in the box indicates the median. Whiskers extending 837 

from the 25th and 75th percentiles to represent 1.5 times the interquartile range.  838 
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Figure 4. Comparison of differences in SMAP, SMOS and ASCAT correlation coefficients (R) obtained 839 

from TC (a-f) and QC (g-i) at ground locations shown in Fig. 2. In the vertical axes, “psv” refers to 840 

passive satellite products, (SMAP or SMOS), “pt” refers to point-scale ground observations. The vertical 841 

dashed lines indicate the mean R for each histogram. Number of stations used in each subplot is shown 842 

as “N”. 843 

Figure 5. Comparison of R (same as in Fig. 4) obtained from NRv3- and ECMWF-based TC analyses. 844 

Subplots a), b) and c) include common data points in Fig. 4a and 4d, Fig. 4b and 4e, and Fig. 4c and f, 845 

respectively.  846 

Figure 6. Comparison of R (same as in Fig. 4) obtained from TC and QC analyses. Subplots a), b) and 847 

c) include common data points in Fig. 4a and 4g, Fig. 4b and 4h, and Fig. 4c and i, respectively. 848 

Figure 7. Quasi-global image of TC-based R [-] (single run, without bootstrap re-sampling) for SMAP, 849 

ASCAT and SMOS (left column: subplots a, c, e) and total width of the 95% confidence interval (‘CI’, 850 

right column: subplots b, d, f) derived from a 1,000-member bootstrap sampling.  Subplots a) – d) are 851 

based on a [SMAP-ASCAT-ECMWF] triplet. Subplots e) - f) are based on a [SMOS-ASCAT-ECMWF] 852 

triplet. 853 

Figure 8. a) Distribution of correlation coefficients (from single triple collocations runs) in common grid 854 

pixels (N=16,332) where both sets of TC analyses [SMAP/ASCAT/ECMWF and 855 

SMOS/ASCAT/ECMWF] are available (see Fig. 2 caption for boxplot descriptions); b) comparison of 856 

ASCAT R obtained via SMAP- and SMOS-based TC analyses. 857 

Figure 9. Comparison of TC-estimated correlation coefficients between the satellite retrieval products. 858 

Color shade indicates the product that obtains higher R in more than 95% of the bootstrap re-sampling 859 

runs in a given grid cell. All areas of non-significant differences are masked. Plotted results are based on 860 

the following triplets: a) [SMAP-ASCAT-ECMWF] (for SMAP) vs. [SMOS-ASCAT-ECMWF] (for 861 
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SMOS); b) [SMAP-ASCAT-ECMWF] (for SMAP and ASCAT); and c) [SMOS-ASCAT-ECMWF] (for 862 

SMOS and ASCAT).  863 

Figure 10. The satellite product (SMAP, SMOS or ASCAT) with the highest TC-based correlation 864 

coefficient (𝑅̅, bootstrap mean). 865 


