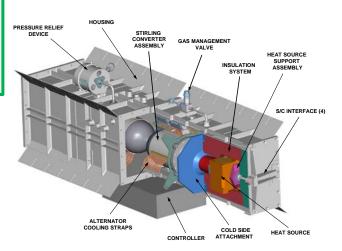
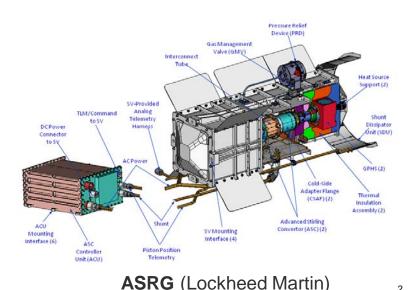
Status of Dynamic Power Convertor Development for RPS at NASA GRC

Sal Oriti and Scott Wilson NASA Glenn Research Center, Cleveland, OH

May 3, 2018 IAPG Mechanical Working Group Meeting


www.nasa.gov

Dynamic Conversion Power System Background



Advantages:

- Higher efficiency, less waste heat for spacecraft
- Low generator power decline (fuel decay only)
- Large multi-mission generator design space
- Extensible to high power levels

SRG110 (Lockheed Martin)

SRG-110

- ~114 W_o output
- Infinia's Technology Demonstration Convertor (TDC)
- 2 GPHS modules
- **Overall efficiency = 23%** ٠
- 4.2 W_e/kg (before engineering unit build)
- Developed during 2001 to 2006 timeframe

ASRG

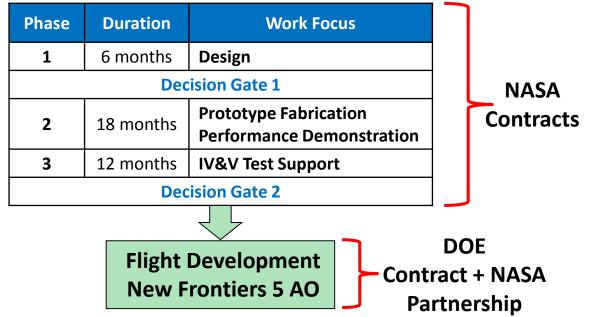
- ~140 W_output
- Sunpower's Advanced Stirling Convertor (ASC)
- **2 GPHS modules**
- **Overall efficiency = 28%**
- 4.4 W_a/kg
- Developed during 2006 to 2013 timeframe

Key Convertor Performance Goals

Item	Description	Multi-Micc	ion Capable:
Life	20 years		
Efficiency	≥ 24% at T _{cold} > 100 °C	Mars	Titon
Specific Power	20 W_e/kg (convertor only)		Titan
Partial power	Can be throttled down to 50%		
Degradation	< 0.5% / year		and the second second
Hot-End Temp	< 1000 °C	Moon	Europa
Cold-End Temp	20 to 175 °C		and the second
Random Vibe	Launch qual		
Static Accel	20g for 1 minute, 5g for 5 days		
Radiation	300 krad	Deep Space	
Size	Enables generator that can fit in DOE shipping container		KUIPTA

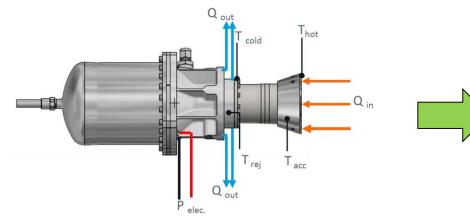
Robustness goals also defined:

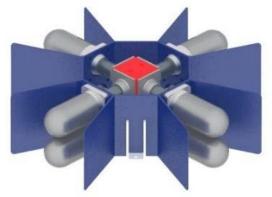
- Design has margin to tolerate events outside expected environments
- Fewer single-point-failures is more robust
- Tolerant of loss of electrical load
- Tolerant of operational error
- Manufacturability not dependent on specialized workmanship


Convertor Development Timeline

- RFP via Research Opportunities in Space and Earth Sciences (ROSES-2016), August 2016
- Received 14 proposals, encompassing multiple dynamic conversion methods
- 4 contracts awarded in FY2017:

Contractor	Convertor Name	
American Super Conductor	Flexure Isotope Stirling Convertor (FISC)	
Creare, LLC	Turbo-Brayton Convertor (TBC)	
Northrop Grumman Aerospace Systems	Thermo-Acoustic Power Convertor (TAPC)	
Sunpower, Inc.	Sunpower Robust Stirling Convertor (SRSC)	


• Contracts consist of up to 3 Phases:

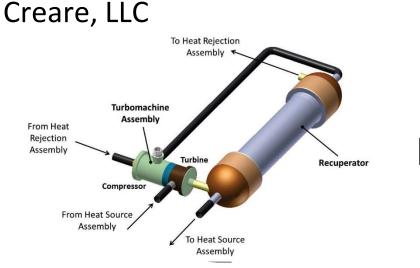


Flexure Isotope Stirling Convertor (FISC)

American SuperConductor (AMSC), formerly Infinia Tech Corp.

Notional 240 W generator concept with 100% convertor redundancy

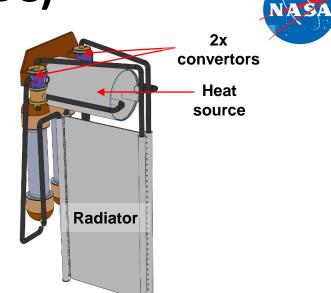
70 W Flexure Isotope Stirling Convertor (FISC)


C	Con	vert	or	Pe	rfor	ma	nce	

Hot-end Temp	650 °C
Cold-end Temp	20 to 175 °C
Efficiency	31% @ T _{COLD} =100°C
Power Output	70 W _{ac}
Mass	3.3 kg (>20W _e /kg)

- Flexure-bearings, beta arrangement free-piston Stirling conv.
- Derivative of Technology Demonstration Convertor (TDC) from a 1990's SBIR and SRG-110 project
- Design deltas relative to TDC to improve the following:
- 1. Higher radial stiffness flexures, overstroke tolerance, hot-end temperature margin
- 2. Independently verifiable subassemblies
- 3. Higher efficiency alternator, higher cold-end temp capability
- 4. System integration : Tailored interfaces

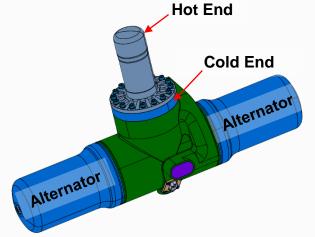
Status: Decision Gate 1 successfully passed Phase 2 awarded, April 2018


Turbo-Brayton Convertor (TBC)

355 W_e Turbo-Brayton Convertor (TBC)

TBC Performance

Turbine Inlet Temp (Hot End)	730 °C
Compressor Inlet Temp (Cold End)	20 to 175 °C
Efficiency	26% @ T _{COLD} =100°C
Power Output	355 W _{ac}
Mass	15.5 kg (>20W _e /kg)


Notional 355 W_e generator concept with 100% convertor redundancy

- Closed Brayton continuous flow cycle with recuperation
- Scaled-down from previous designs
- Leverages heritage from Creare's HST NICMOS cooler
- Two counter-rotating units permits redundancy, and nullifies angular momentum

Status: Decision Gate 1 successfully passed Phase 2 awarded, April 2018

Thermo-Acoustic Power Convertor (TAPC)

Northrop Grumman Aerospace Systems

110 W_e Thermo-Acoustic Power Convertor (TAPC)

TAPC Performance

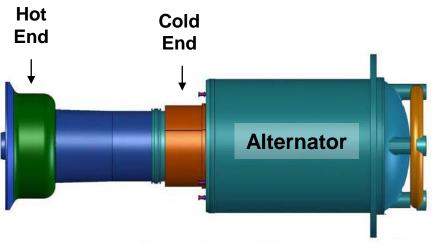
Hot-end Temp	700°C
Cold-end Temp	20 to 175 °C
Efficiency	26% @ T _{COLD} =100°C
Power Output	110 W _{ac}
Mass	6.4 kg (< 20 W _e /kg)*

*Options being explored to reduce convertor mass to meet W/kg target

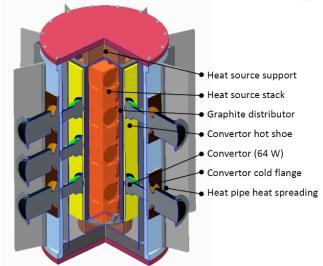
Notional 220 W_e generator concept with 100% convertor redundancy

- Thermoacoustic Stirling cycle
- Eliminates physical displacer (no moving parts in hot end)
- Natively balanced, dual-opposed alternator building block
- Alternators driven by shared compression space
- Based on previous development efforts: 2003 NRA, IRAD-developed device

Status: Phase 1 Design Review Completed, April 2018 Phase 2 award pending gov't decision


GPHS modules

Sunpower Robust Stirling Convertor (SRSC)


Sunpower, Inc.

65 W_e Sunpower Robust Stirling Convertor (SRSC)

SRSC P	erformance
--------	------------

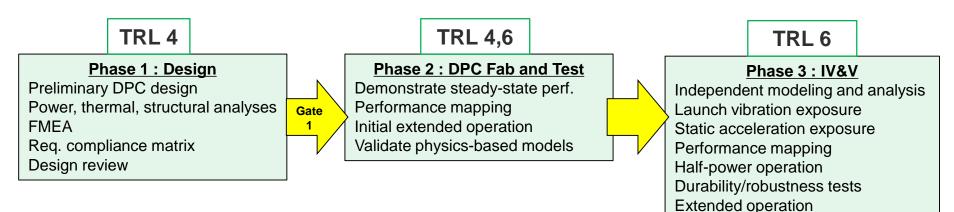
Hot-end Temp	720°C
Cold-end Temp	20 to 175 °C
Efficiency	29% @ T _{COLD} =100°C
Power Output	65 W _{ac}
Mass	2.0 kg (> 20 W _e /kg)

Notional 500 W_e generator concept with 25% convertor redundancy

- Gas-bearing based, beta arrangement free-piston Stirling
- Derivative of Advanced Stirling Convertor (ASC) from ASRG Project
- Enables wide generator design space
- Design deltas relative to ASC to improve the following:
- 1. Higher radial gas bearing stiffness, overstroke tolerance, regenerator robustness, debris tolerance
- 2. Higher cold-end temp capability, static acceleration

Status: Phase 1 Design Review Completed, April 2018 Phase 2 award pending gov't decision

Path to Flight


Goal:

Achieve convertor TRL 6, then initiate generator flight development

NASA definition of TRL 6: "System/subsystem model or prototype demonstration in a relevant environment (ground or space)"

Surrogate Mission Team (SMT), chartered by RPS Program

- NASA, DOE, JPL, APL, GSFC
- Formulated requirements to provide mission pull
- Integrated with DPC contract progress monitoring
- Formulated a TRL evaluation method
- Providing failure mode and probability of success analysis
- Work phases and deliverables tied to TRL advancement

Stirling Convertor Extended Operation

Many convertors from SRG110 and ASRG projects are still undergoing continuous operation today

Project & Provider	Test Article	Years of Operation
SRG 110 Infinia, Corp.	TDC #13	12.6 ¹
	TDC #15	11.6
	TDC #16	11.6
	SES #2	0.3
ASRG Sunpower, Inc.	ASC-0 #3 ²	8.3
	ASC-E3 #4 ²	3.1
	ASC-E3 #6 ²	2.4
	ASC-E3 #9	1.6
	ASC-E3 #8	1.9
	ASC-L ²	4.0

Cumulative Per-Convertor Runtime as of May 2018 ¹Current record-holder for maintenance-free heat engine ²Have undergone random vibe portion of life certification

Date	Nov 20, 2010	Aug 30, 2016
TDC #13	65.4 W	65.4 W
TDC #14	64.5 W	64.5 W

TDC #13 and #14 performance data over six year period

ASC-E3 Pair Extended Operation Test Article

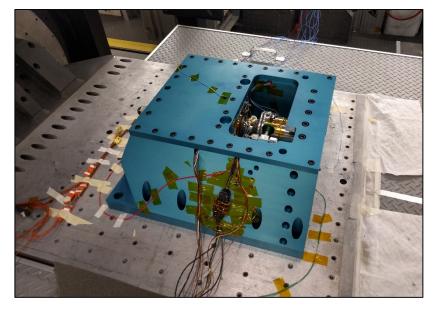
TDC #14 Disassembly and Inspection

Encouraging results from TDC #14 inspection 105,620 hrs of operation = 12 years, 31 billion cycles Further disassembly is planned

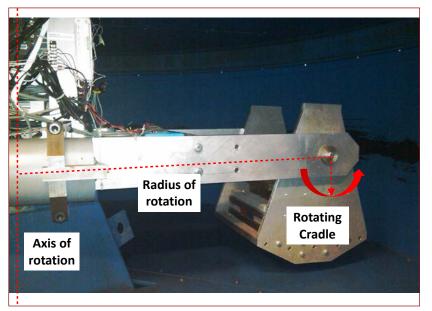
- No sign of flexure degradation
- Signs of oxidation on expected surfaces likely from early non-hermetic operation
- Geometric stability verified via Coordinate Measuring Machine (CMM)
- Evidence of oxide residue/dust in various areas did not degrade operation

National Aeronautics and Space Administration

TDC #14 aft flexure stack after 12 years of operation



Launch Vibration Exposure on SES #2



Engineering Unit convertor from SRG-110 project successfully passed launch simulation while operating

- 10.35 g_{rms} profile formulated by SMT, encompasses wide span of launch vehicles
- 2 min duration at full random vibe level
- Temporary reduction in power output during lateral axes exposures (expected)
- SES #2 now operating continuously at full power, 2900 hrs accumulated
- Static acceleration exposure test up to 20g recently performed

SES #2 undergoing launch vibration exposure

Centrifuge facility for static acceleration tests (Case Western Reserve University)

Conclusions

NASA's dynamic power convertor development in support of high-efficiency RPS is progressing as planned, and shows promise

- 2 DPC contracts have passed Decision Gate 1, and have been awarded Phase 2 (convertor prototype fabrication and test)
- 2 DPC contracts have completed Phase 1 reviews
- NASA GRC is preparing for DPC prototype IV&V, ~2020
- Ongoing research utilizing existing hardware supports viability of dynamic power conversion for RPS