

Michael Hicks

NASA - John H. Glenn Research Center Cleveland, OH

Uday Hegde

Case Western Reserve University Cleveland, OH

Carole Lecoutre, Samuel Marre, and Yves Garrabos

CNRS, Université de Bordeaux, ICMCB Pessac, France

2017 Annual Meeting of the American Society for Gravitational and Space Research

Seattle, Washington October 25-28, 2017

This work was supported by NASA Contract NNC13BA10B with Universities Space Research Association

- Singular behavior near the critical point (highly compressible, thermal diffusivity →0)
- Fundamental and practical interest- water reclamation and waste management technologies (organic compounds, gases highly soluble in supercritical water)

Why Supercritical Salt Water Mixtures?

- Spacecraft waste streams either contain various salts or they may occur during neutralization of acids formed during oxidation
 - sodium carbonate used for neutralization of HCI
 - sodium sulfate formed during neutralization of sulfuric acid

 $Na_{a}SO_{4}$ at 4 wt %, $T_{B} = 356^{\circ}C$, P = 250 atm

Side View

Figure¹ shows the rapid deposition on a heated surface inserted into a flowing water/salt solution and maintained at a temperature just above that of the solubility limit in the bulk fluid

¹ Hodes, M., Marrone, P., Hong, G.T., Smith, K. A., Tester, J. W., Salt precipitation and scale control in supercritical water oxidation - Part A: fundamentals and research; Journal of Supercritical Fluids; 29 (2004) 265-288

Salt Solubility and Precipitation

- Many salts of interest start precipitating at low concentrations near the critical transition conditions ln(x) ~ A + B ln(ρ)
- How does presence of salt effect liquid-vapor phase distribution in microgravity?
- Where does the salt precipitate?
- How much does critical temperature change with addition of salt?

Objectives

Overall Objective

Investigate the behavior of an isochoric salt-water mixture near its critical point under microgravity conditions

- Specific Objectives
 - Investigate the phase distribution as critical transition is approached partitioning of fluid into liquid and vapor phases partitioning of salt between liquid and vapor
 - Determine shift in the critical temperature compared to critical water
 - Investigate precipitation behavior

Experimental Method

- Closed test cell filled with salt water solution (0.5% w Na₂SO₄) at close to critical density of water (322 kg/m3)
- Heat or cool test cell at programmable rates :
 - 0.5 mK/min to 10 mK/sec for heating
 - 0.5 mK/min to 5 mK/sec for cooling

- Ideally reversible phenomena during heating/cooling
- Two factors prevented ideal reversibility:
 - salt precipitation on windows that does not fully redissolve
 - formation of denser phase fluid Heating rate limitations?

[&]quot;Solubility of Sodium Sulphate in the Vicinity of the Critical Point", Daucik, K, and Jensen, J. P., 14th International Conference on the Properties of Water and Steam, Kyoto, 2004.

DECLIC Facility on ISS

Accuracy: 40 mK with calibration

Reproducibility: ±10 mK

Experiment Locker (EXL) houses the optical bench, light sources and sensors (3 cameras, 2 photodiodes, 3 accelerometers)

Electronic locker (ELL) includes the power and data handling, and thermal regulation

HTI Insert contains the fluid cell and the dedicated conditioning hardware

- Insert Size: 200x200x450 mm³
- Test Cell: aqueous solution of Na₂SO₄ at 0.5%-w at critical density (0.322 g/cm³)
- Fluid Volume: 0.3 mm³ coin shaped

 Diagnostics: temperature measurements (3 cell sensors), turbidity measurement, video imaging (2 primary cameras ... Wide and Small FOV)

Gradient over fluid cell < 1 mK/cm

Estimate of Quality (liquid-vapor partitioning) vs Temperature

- Estimate based upon pure water properties (NIST database)
- If cell is filled at the critical density there should be equal mass of vapor and liquid just below the critical temperature since liquid and vapor densities become equal.

Estimate of Salt Partitioning vs Temperature

- In $(x_v/x_l) = -(4805/T)$ In (ρ_l/ρ_v) Shvedov and Tremaine, J. Sol. Chem., 29, 10, 2000.
- Unprecipitated salt stays mainly in the liquid phase until close to critical conditions.

Phase Distribution Below the Critical Point T = 351 C Pure Water

Incipient Boiling ~ 373 C

- Bubble size ~ 20 microns
- Smaller and less disperse bubbles compared with pure water

Boiling in pure water \sim (Tc – 2K)

Channeling of Vapor Bubbles

- Bubbles form discrete channels as they move to the L-V interface
- Wake effect of preceding bubble
- Localized salinity gradients
- Channels less discernible as bubbling becomes more intense

Formation of Salinity Gradient Near the Wall

- Below the critical temperature salt partitions favorably into the liquid
- Vapor bubbles generated at the wall are effectively pure H₂O..
 leaving a localized liquid region around the vapor bubble at higher Na₂SO₄ concentration
- As vapor generation intensifies this leaves a higher salinity and higher density liquid near the walls

Formation of Salinity Gradient Near the Central Vapor Bubble

- Below the critical temperature salt partitions favorably into the liquid
- During the liquidvapor interchange process salt stays in the liquid near the liquid-vapor surface

Partitioning Rates

- Partitioning calculations assume equilibrium... no information on effects of temperature ramp rates
- Approach to critical conditions was observed for different temperature ramp rates:
 - 0.5, 1.0, 2.0, 10, 15, 30, 50, 100 mK/min
- Different types of behavior were observed depending upon temperature ramp rate:
- fast rate , > 30 mK/min
- slow rate, < 10 mK/min
- intermediate rate ~ 10 -30 mK/min

Fast Ramp Rate > 10 mK/min

(a) Vapor bubble expands (b), (c), (d) Liquid film on windows dries out with a denser phase around circumference

(e), (f), (g) Denser phase forms a crescent after equilibration

Temperature ranges from ~ Tc- 120 mK to Tc + 30 mK

Slow Ramp Rate < 10 mK/min

Expanding vapor bubble breaks with resulting motion with many small bubbles. Over time a new vapor bubble is formed.

Slow Ramp Rate- Progression to Critical Transition (continued)

 \sim Tc -110 mK to Tc + 5 mK

Newly stabilized central vapor bubble collapses. After a period of unstable motion during temperature ramp up the fluid transitions through critical state.

Intermediate Ramp Rates

10 mK/min: Central bubble reforms and transitions to "single phase" with density gradient

20 mK/min: Central bubble attempts to reform but fluid transitions without bubble reforming

Fast vs Slow Ramp

Appearance of Dense Phase

Possible reasons:

- Residual temperature gradient in cell
- Salt does not partition equally between liquid and vapor prior to critical transition
- Clustering of excess water molecules around unprecipitated salt ions
- Salt precipitate in fluid

Summary

- Experiments were conducted on the ISS under isochoric conditions for observing the phase behavior of a water- 0.5% w Na₂SO₄ solution in the near critical regime
- Incipient boiling starting at ~373 C is characterized by ~ 20 microns size bubbles travelling in channels toward the central vapor bubble
- Near critical phase behavior depends upon the heating rate:
- For high heating rates (> 10 mK/min) the central vapor bubble expands with a denser phase around the boundary
- -For low heating rates (< 10 mK/min) the central bubble expands and breaks up with subsequent formation of a second stabilized vapor bubble. Transition to critical is characterized by the breaking of this central bubble
- Slower temperature ramp appears to improve the liquid –vapor partitioning
- Appearance of the denser phase near critical conditions may arise for a number of reasons

Acknowledgments

- NASA HQ (Exploration Science Mission Directorate) F. Chiaramonte Program Executive
- NASA GRC (Space Flight Systems Directorate) W. Foster, ISS Research Project Manager
- CNES/DECLIC Project Team