

Saffire: A Novel Approach to Study of Spacecraft Fire Safety Using Un-manned Spacecraft

33rd Annual Meeting American Society for Gravitational and Space Research October 25-28, 2017 Hyatt Regency @ Seattle's Southport on Lake Washington

International Topical Team

James S. T'ien, Ya-Ting T. Liao Case Western Reserve University, Cleveland, OH Carlos Fernandez-Pello UC Berkeley, Berkeley, CA Jose L. Torero University of Maryland, College Park, MD Guillaume Legros Sorbonne Universités, UPMC Univ Paris, France Christian Eigenbrod University of Bremen (ZARM), Bremen, Germany Nickolay Smirnov Lomonosov Moscow State University, and Federal Science Center, Moscow, Russia **Osamu Fujita** Hokkaido University, Sapporo, Japan Sebastien Rouvreau Belisama R&D, Toulouse, France Balazs Toth ESA ESTEC, Noordwijk, Netherlands **Grunde Jomaas** University of Edinburgh, Edinburgh, UK

Introduction

- Despite millennia of experience with fire, over 3,000 people die from fires each year in the U.S.
- Fire is a catastrophic hazard for spacecraft
- However, without any empirical results, it is impossible to be sure that our predictions of fire behavior in a spacecraft are realistic.
- What will kill you first?
 - CO buildup?
 - Other toxic products?
 - Heat?
 - Smoke?
 - Pressure Rise?
- How should the crew respond?

All inhabited types of structure, vehicle, or even open space on earth have been the subject of full scale fire studies and/or training.

Air Force Fire Response Training

FAA full scale aircraft test

Controlled burns of structures

Naval Research Laboratory - Ex-USS Shadwell

Bureau of Mines explosion testing

Car Fire Training

Forest Fire response

Benefit of experience

- From these tests we have a good understanding of
 - How fast a 1-g fire will grow
 - How to detect a 1-g fire
 - How to extinguish a 1-g fire
 - The probability of a 1-g fire

Having only burned samples up to 8 by 15 cm, we lack this understanding for low-g

Saffire was proposed to provide a means to address these questions for future spacecraft.

Saffire Objectives

To address these concerns, an experiment was defined to examine issues including

- Low-g flammability limits for spacecraft materials
- Fate of a large-scale spacecraft fire and its interaction with the spacecraft

Objectives:

- Saffire 1 & 3: Assess flame spread of large-scale microgravity fire (spread rate, mass consumption, heat release)
- Saffire 2: Verify oxygen flammability limits in low gravity

- Data obtained from the experiment will be used to validate modeling of spacecraft fire response scenarios
- Evaluate NASA's normal-gravity material flammability screening test for low-gravity conditions.

Concept of Operations

Test sample inserted into hardware.

Hardware installed on Cygnus vehicle.

Cygnus vehicle with hardware installed.

Saffire Layout

Saffire I and III

- Saffire II sample layout:
- Silicone) (1-4)
- SIBAL (5 & 6))
- Nomex (with PMMA ignition) (7)
- PMMA (flat and structured) (8 & 9)

Saffire Operations

	Mission	Launch Site	Launch Vehicle	Integration	Launch	Mission Ops
Saffire-I	OA-6	KSC	Atlas	Jan 25, 2016	Mar 22, 2016	June 14, 2016
Saffire-II	OA-5	WFF	Antares	May 12, 2016	Oct 17, 2016	Nov 21, 2016
Saffire-III	OA-7	KSC	Atlas	Feb 3, 2017	Mar 27, 2017	June 4, 2017

Orbital and Saffire team at Dulles

Saffire team at GRC

Saffire-I and III Results

Saffire-III (25 cm/s)

- Sequence of concurrent flame images from Saffire-I and III.
 - Each image is 40-sec apart.
 - Saffire-I burned for 400 sec
 - Saffire-III burned for 320 sec.

This is equal to the inverse ratio of the flame speed The flame speed is proportional to the air flow velocity

- Comparison of the opposed (upper) and concurrent (lower) flames from Saffire-III.
- The flame images were taken at different times (near the end of each burn and superimposed.

Saffire-I-III Results

Measurements of flame base (up stream), pyrolysis tip (downstream), and pyrolysis length from concurrent and opposed burns from Saffire-I.

Spread rate summary for Cotton/Fiberglass fabric burning in microgravity

Saffire-I-III Results

- Flame spread over a large thin charring surface in low-gravity showed that steady flame spread was possible (unlike normal gravity).
- Concurrent flame spread (with the wind) was shown to be more sensitive to the flow duct dimension than previously anticipated.
- Large scale experiments could be safely conducted in an un-manned spacecraft.

A new series of experiments was proposed to extend the impact to the vehicle, examine thick materials and consider detection and post-fire cleanup

Saffire-IV, V, and VI Concept

Objectives:

- Demonstrate spacecraft fire monitoring and cleanup technologies in a realistic spacecraft fire scenario
- Characterize fire growth in high O_2 , low pressure atmospheres
- Provide data to validate models of prediction of the impact of a fire on vehicle habitability

Saffire Flow Unit

Approx. 53x90x133cm. New features include 2 side view cameras, acid gas, O_2 , heat and byproduct release to cable

Far Field Diagnostics

Far Field Diagnostics (in Mid Deck Locker)

Avionics, CO₂ scrubber, Smoke Eater, combustion product and smoke sensors

Forward Steps

- The Saffire experiments were the first practical-scale spacecraft fire safety investigations.
- In addition to pioneering a new research capability, they determined that concurrent flames can achieve a steady spread rate and that overall the concurrent spread rates are strongly influenced the the flow duct size.
- The next Saffire series will examine larger fires of longer duration to examine the impact of a fire on the vehicle habitability .

Backup

Four tests:

40.6-cm-wide SIBAL fabric (cotton-fiberglass); concurrent and opposed-flow in 20 cm/s air flow 5-cm-wide SIBAL fabric; concurrent-flow in air at 20 and 25 cm/s

Saffire 2


```
Ignition power:
Saffire 1: 165 W (for 8 s)
4.1 W/cm (per unit fuel width)
Saffire 2: 80 W (for 9.2 s)
16 W/cm (per unit fuel width)
```

Average flame power: Saffire 1: 1200 +/- 300 W Saffire 2: 200 +/- 50 W

Fuel characteristics ("SIBAL" fabric)

75% cotton, 25% fiberglass blend

Simple weave pattern (60 x 40 threads per inch)

Cotton and fiberglass fibers intermingled

Overall area density: 18 mg/cm²

Fuel sizes (W x L): 40.6 x 94 cm and 5 x 29 cm

Saffire 1 video

SIBAL fabric (40.6 cm x 94 cm) burning in air at 20 cm/s concurrent flow

Average flame spread rate is 1.8 mm/s; estimated average flame power is 1200 +/- 300 W

Total burn time is 420 s

Plots of igniter current and thermocouple temperatures. X-distance along the sample for each thermocouple is shown on the diagram. Heights above the surface are indicated on the plot.

Table 1. Summary of Samples, Test Conditions, and Selected Results							
Sample	Material	Width	Thickness	Length	Flow	Direction	Δ %O ₂ ⁱ
I-1	Cotton-Fiberglass	40.6 cm	0.37 mm	94 cm	20 cm/s	Concurrent	21.7 to 21.5
I-2	Cotton-Fiberglass	40.6 cm	0.37 mm	~ 10 cm	20 cm/s	Opposed	~ 21.5
II-1	Silicone	5 cm	0.27 mm	29 cm	20 cm/s	Concurrent	~ 22.1
II-2	Silicone	5 cm	0.61 mm	29 cm	20 cm/s	Concurrent	~ 22.1
II-3	Silicone	5 cm	1.03 mm	29 cm	20 cm/s	Concurrent	~ 22.1
II-4	Silicone	5 cm	0.37 mm	29 cm	20 cm/s	Opposed	~ 22.1
II-5	Cotton-Fiberglass	5 cm	0.37 mm	29 cm	20 cm/s	Concurrent	~ 22.1
II-6	Cotton-Fiberglass	5 cm	0.37 mm	29 cm	25 cm/s	Concurrent	~ 22.1
II-7	PMMA & Nomex	5 cm	0.85 & 0.37 mm	5 & 24 cm	20 cm/s	Concurrent	~ 22.1
II-8	ΡΜΜΑ	5 cm	See Fig. 5	29 cm	20 cm/s	Concurrent	22.1 to 22.0
II-9	ΡΜΜΑ	5 cm	1 cm	29 cm	20 cm/s	Concurrent	22.0 to 21.9
III-1	Cotton-Fiberglass	40.6 cm	0.37 mm	94 cm	25 cm/s	Concurrent	21.2 to 21.0
III-2	Cotton-Fiberglass	40.6 cm	0.37 mm	~ 10 cm	25 cm/s	Opposed	21.2 to 21.0

Table 1. Summary of Samples, Test Conditions, and Selected Results (continued)

Sample	Ignition Power	Ignition Time	Burn Duration	μ-g Burn Length	μ-g Spread Rate	1-g Burn Length	1-g Spread Rate
1-1	182 W	8 s	420 s	~ 84 cm	1.8 mm/s	Complete	Acceleratory
1-2	182 W	8 s	70 s	~ 10 cm	1.3 mm/s	~ 0	n/a
2-1	80 W	9.2 s	Insignificant	~ 0	n/a	~ Complete	Acceleratory
2-2	80 W	9.2 s	Insignificant	~ 0	n/a	7.6 cm	1.2 mm/s
2-3	80 W	9.2 s	Insignificant	~ 0	n/a	~ 0	n/a
2-4	80 W	9.2 s	Insignificant	~ 0	n/a	Complete	0.6 mm/s
2-5	80 W	9.2 s	145 s	29 cm	2.1 mm/s	Complete	Acceleratory
2-6	80 W	9.2 s	115 s	29 cm	2.6 mm/s	Complete	Acceleratory
2-7	80 W	9.2 s	140 s	5 cm & 0 ⁱⁱ	n/a (Nomex)	~ 0 (Nomex)	n/a (Nomex)
2-8	97 W	30 s	600 s	~ 10 cm ⁱⁱⁱ	Note (iv)	Complete	Acceleratory
2-9	97 W	30 s	900 s	~ 10 cm ⁱⁱⁱ	Note (iv)	Complete	Acceleratory
3-1	182 W	8 s	300 s	~ 84 cm	2.3 mm/s	Complete	Acceleratory
3-2	182 W	8 s	60 s	~ 10 cm	0.98 mm/s	~ 0	n/a

Cygnus

The Enhanced	variant of Cygnus is seen approaching the ISS				
Manufacturer	Orbital ATK				
Country of origin	United States				
Operator	NASA				
Applications	ISS resupply				

Specifications Spacecraft type Unmanned cargo vehicle Design life 1 week to 2 years^[1] Dry mass 1,500 kg (3,300 lb) (Std) 1,800 kg (4,000 lb) (Enh) Payload 2,000 kg (4,400 lb) (Std) 3,200 kg (7,100 lb) (Enh on Antares capacity 230)[2][3] 3,500 kg (7,700 lb) (Enh on Atlas V 401)^{[2][4]} 5.1 m × 3.07 m (16.7 ft × 10.1 ft) Dimensions (Std) 6.3 m × 3.07 m (20.7 ft × 10.1 ft) (Enh)^{[5][6]} 18.9 m³ (670 cu ft) (Std) Volume 27.0 m³ (950 cu ft) (Enh)^[3] 3.5 kW Power