

Automated Scenario Generation for Human-in-the-Loop Simulations

Gano Chatterji and Yun Zheng Crown Consulting, Inc.

Kee Palopo

NASA Ames Research Center

Jimmy Nguyen Optimal Synthesis, Inc.

Motivation

- Need for realistic scenarios to study diverse operations
 - Unmanned Aerial Vehicles
 - Urban Air Mobility
 - Supersonic aircraft
- Manual creation of realistic scenarios for generating traffic for Human-in-the-Loop simulation is difficult
 - Missing and erroneous data
 - Repeated creation of scenario and testing in simulation is time consuming
 - Difficulties cause studies to be limited to few scenarios
- Automated scenario generation has potential for overcoming limitations
 - Use real air traffic data to create scenario
 - Remove flights with erroneous data
 - Mix data from different days to achieve desired traffic volume

Research Questions

- Can initial traffic scenario be generated using an automated process that runs in Multi-Aircraft Control System (MACS)?
- Can this initial traffic scenario be used as a starting point for building a Human-in-the-Loop (HITL) scenario?
- How does one compare the initial traffic scenario created using the automated process with the manually altered HITL-scenario?
- Can an automated process be used to directly create a HITL-scenario?

Outline

- Air Traffic Management (ATM) Testbed
- Automated scenario generation using ATM Testbed
- Approach
- Results
- Conclusions

Air Traffic Management Testbed

Air Traffic Management Testbed

Creation of Seed-scenario

Input Data for Scenario Generation

- Reduced Record (RD)
 - Single record for each flight
 - Beacon-code, flight-plan, takeoff/landing runway, departure/arrival time, sector/center transition list
- Event Data (EV)
 - Multiple records related to events for each flight
 - Event time and type- landing, crossing
 - Example: center crossing from ZOA to ZLA
- Integrated Flight Format (IFF)
 - Multiple records for each flight
 - All flight plans including amended flight plans
 - Position data
- EV and RD useful for filtering and IFF for data augmentation

Simulation Architect View for Composing MACS Traffic Scenario

Load & filter input data

Approach: Seed-scenario versus HITL-scenario

Approach: Seed-scenario versus HITL-scenario

Approach: Seed-scenario versus HITL-scenario

Traffic Scenarios

- Seed-scenario generated using automated process
 - June 6, 2016 RD, EV and IFF files
 - Arrivals to Newark, New Jersey
 - Six-hours traffic starting at 17:00 UTC
 - 299 flights; 274 landing on 22L, six on 22R, one on 29 and 18 not assigned
- Manually altered HITL-scenario
 - Entry times altered to squeeze six-hours of traffic to five-hours to exceed arrival capacity of 40 aircraft/hour
 - Flights within 40 nautical miles surrounding airport removed
 - Some flights at the beginning of scenario removed
 - Flights removed to maintain ratio of internal (400 nautical miles) to total number of flights
 - 191 flights, all landing on 22L

Data Analysis I: Number of Flights with Same Parameter Value

Seed-scenario Results

#	Parameter	Once	Repeated	Total
1.	Call-sign	281	9	290
2.	Aircraft-type	11	24	35
3.	Destination airport	0	1	1
4.	Landing runway	1	3	4
5.	MACS flight-plan	148	47	195
6.	ATC flight-plan	174	41	215
7.	Beacon-code	256	21	277
8.	Departure airports	50	68	118
9.	Entry point altitude	73	61	134
10.	Entry point airspeed	77	58	135
11.	Entry point sector-ID	47	23	70
12.	Aircraft weight	5	24	29

HITL-scenario Results

#	Parameter	Once	Repeated	Total
1.	Call-sign	191	0	191
2.	Aircraft-type	10	20	30
3.	Destination airport	0	1	1
4.	Landing runway	0	1	1
5.	MACS flight-plan	64	41	105
6.	ATC flight-plan	80	40	120
7.	Beacon-code	181	5	186
8.	Departure airports	41	50	91
9.	Entry point altitude	35	46	81
10.	Entry point airspeed	23	14	37
11.	Entry point sector-ID	0	3	3
12.	Aircraft weight	3	16	19

Seed-scenario versus HITL-scenario

		Seed-s	cenario	HITL-scenario	
#	Parameter	Once/ Total (%)	Repeated/ Total (%)	Once/ Total (%)	Repeated/ Total (%)
1.	Call-sign	97	3	100	0
2.	Aircraft-type	31	69	33	67
3.	Destination airport	0	100	0	100
4.	Landing runway	25	75	0	100
5.	MACS flight-plan	76	24	61	39
6.	ATC flight-plan	81	19	67	33
7.	Beacon-code	92	8	97	3
8.	Departure airports	42	58	45	55
9.	Entry point altitude	54	46	43	57
10.	Entry point airspeed	57	43	62	38
11.	Entry point sector-ID	67	33	0	100
12.	Aircraft weight	17	83	16	84

Data Analysis II: Distribution

Data Analysis III: Seed-scenario Landing Rate

$$t_{L} = t_{E} + \frac{l_{R}}{\overline{V}_{CR}}$$

$$t_{L} - \text{Expected landing time}$$

$$t_{E} - \text{Entry time}$$

$$l_{R} - \text{Route length}$$

$$\overline{V}_{CR} - \text{Average cruise speed}$$

Seed-scenario v/s HITL-scenario Landing Rate Results

274 flights

191 flights

Approach: HITL-scenario versus MACS Output

Approach: HITL-scenario versus MACS Output

Approach: HITL-scenario versus MACS Output

HITL-scenario v/s MACS Output Landing Rate Results

- Expected landing rate graph is sensitive to cruise speed
 - Faster shifts left
 - Slower shifts right
- Errors due to
 - 18 aircraft did not land in MACS
 - Aircraft performance models
 in MACS
 - Conversion of Mach to cruise speed using standard atmosphere

Conclusions

- MACS simulations can be run with seed-scenario created using the ATM Testbed
- Seed-scenario was found to be a good starting point for creating HITL-scenario
- Duplicate flight and distribution analysis useful for data quality and eliminating flights with unreasonable parameter values
- Analysis showed that many of the manual adjustments can also be included in the automated process to directly create the HITL-scenario

Extra Slides

Future Work

Enhance Scenario Generation to create Human-in-the-Loop scenarios

- Eliminate flights with erroneous parameter values
- Select flights to achieve the internal to total ratio
- Alter the landing times to achieve the desired landing rate