

ICNS 2017

Airport Information Sharing Concept Architecture

Rafael Apaza, NASA Glenn Research Center, Cleveland, Ohio Antonio Correas, Skymantics, Washington, DC

April 18-20, 2017

Rafael.Apaza@NASA.gov

Outline

- 1. Introduction
- 2. Project Description
- 3. Airport Architecture Concept
- 4. Requirements Development
- 5. Use Cases and Information Flows
- 6. Future Work and Conclusion

Introduction

- Statistics collected by US DOT (2016):
 - 23,911comercial flights daily
 - 2,246,004 passengers fly every day
 - 8,727,691 commercial flights in 2015
 - 2.1% annual growth over next 20 yrs. (FAA)
- Today's airports are complex operations that depend on the efficient and timely execution of many different functions by stakeholders.
- There is an increasing need for timely exchange of information among all service providers to enable higher efficiency, safety and economic gains.

2. Project Description

Airport Information Sharing Architecture

Develop an airport information sharing architecture that enables seamless exchange of timely information among stakeholders for the improvement of NAS operations

Challenge: Increase airport real time information exchange among stakeholders

Objectives

- Increase airport capacity
- Improve gate turnaround time
- Improve on-time departures
- Improve NAS efficiency, capacity and safety of operations
- Optimize Airline, ANSP, Airport operations.
- Efficient management during offnominal operations e.g. weather
- Advance Airport Collaborative Decision Making

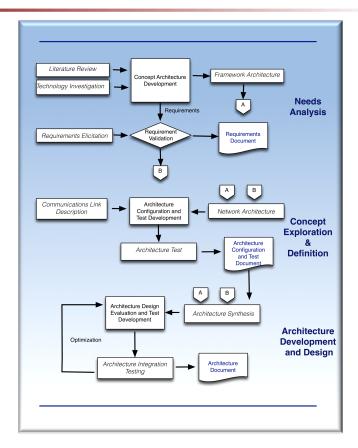
Benefits

- ATM optimization based on full view, real time airport information and increased system predictability
- Operational improvements by implementing advances in networking, communications and information management
- Context Awareness Total view of airport status (facilities/assets, operations, users)
- Improve airport tenant decision making capabilities.

Goal: Enable Seamless Information Exchange and activate new NAS Capabilities

Project Plan

Needs Analysis


- Requirements Development and Analysis
- Concept Architecture Development

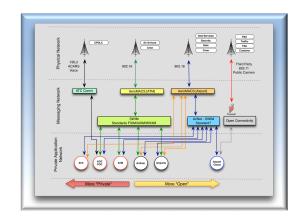
Concept Exploration and Definition

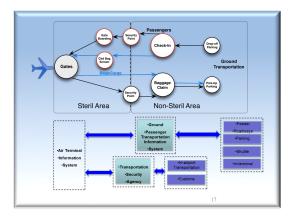
- Communications Link Description/Selection
- Network Architecture
- Architecture Configuration and Test Development
- Architecture Test

Architecture Development and Design

- Architecture Synthesis
- Architecture Test Development
- Architecture Integration testing

FY-2016 Accomplishments


Concept Architecture Framework


- Literature Review
 - NextGen Architecture Configuration (Today 2025)
 - Beyond NextGen Architecture Concept
 - Airport Authority Operations
 - Air Carrier AOC, FOC future operational concepts

Technology Investigation

- Cloud Computing, Resource Sharing
- Information Centric Networking, Security
- Cognitive Network Ops, Software Defined Network.
- Modern Data Link systems
- Concept Architecture Development
 - Model Architecture Definition

Requirements Development and Analysis

Who are the Stakeholders?

Airports primarily divided in two areas: Passenger Terminal and Airfield

Airfield

- FAA
 - Air Traffic
 - Technical Operations
- Airlines
 - AOC
 - Ramp Tower, Baggage, Passenger, Maintenance, etc.
 - Aircrew
- Port Authority
 - Airfield Ops.
 - Terminal Ops.
- Ground handling operations
 - Fueling
 - Maintenance
 - Cabin services

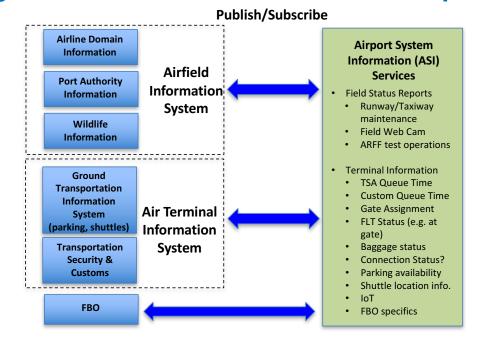
Passenger Terminal

- TSA
- Customs
- Parking
- Taxi services
- Shuttle Services
- Rail Services
- Customer Services
- People mover Systems
- Local DoT
- Car Rentals
- Gate agent services
- Passengers

3. Airport Architecture Concept

Architecture Approach Options

- Information exchange through voice communications among principal stakeholders
- New airport network design interconnecting stakeholders
- Interconnect existing stakeholder owned and operated networks
- Develop new Publish/Subscribe Service Oriented Architecture employing cloud services. Stakeholders publish relevant information
- Support of self-healing networks.


Airport Information Exchange Architecture Framework - Conceptual

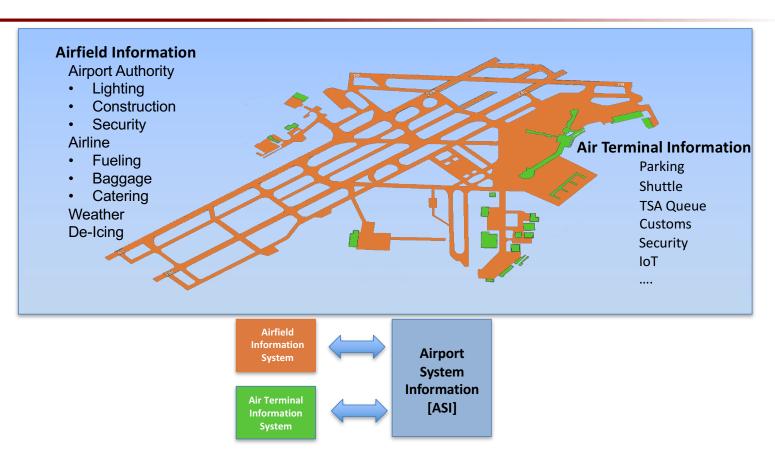
Airport System Information

- Cloud Implementation
 - Publish Subscribe Service
 - Data Center
- Formalized Services
- Web Services
- Airport Exchange Data Model Definition
- Governance Model not in Project

Characteristics

- High Availability
- Secure
- Scalable
- Resilient
- · Real Time Monitoring
- Decouple Publish and Subscribe
- Asynchronous

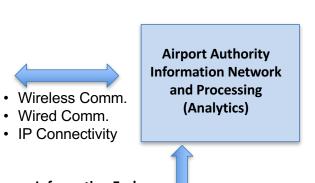
Airfield Information System: Services and information that impact aircraft on time departure/arrival or overall operation of airport surface system


Air Terminal Information System: Services and information impacting passenger's arrival at departure gate. **Airport System Information:** Repository of relevant airport information supporting ATM/ATC, AOC, FOC, Airports, Passenger

Benefits and Information Exchange

Potential Benefits

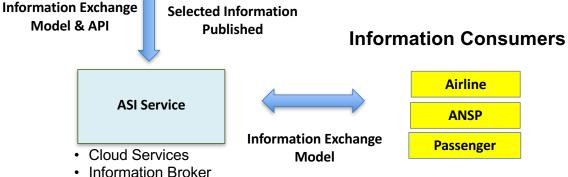
Improve on-time Pushback
Reduce gate turn around
Optimal Departure/Arrival
Improve Predictability
Increase Airport Capacity
Enable Airport CDM
Lower Operational Costs
Improve Coordination
Improve Flow of People
through Airport
Improve connection times
Gate Assignment Planning


Airport Network Architecture - Facility Information Flow

Airport Authority Information Exchange - Sample

Airfield Information

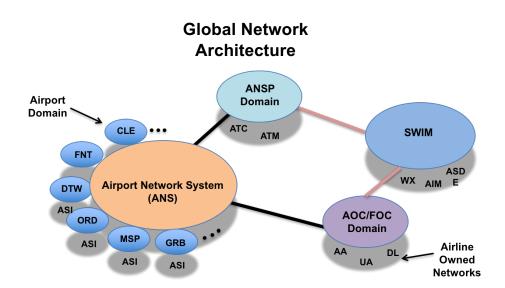
- Security
 - Access gates
 - Surveillance cameras
 - Check points
- Construction/Geo Fencing
- Ground Maintenance
- Snow Removal
- FOD
- Gate Area Inspections
- Runway Inspections
- Cargo Facilities
- · Lighting
- • ARFF
 - Utilities


Services

- · Wired Comm.
- IoT

Air Terminal Information

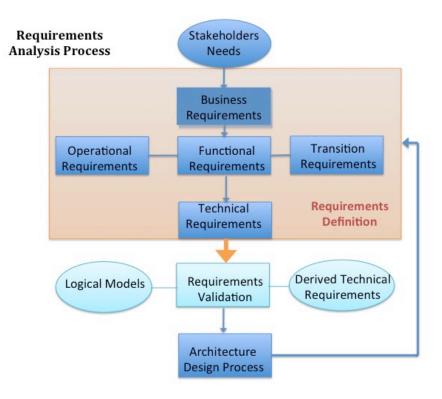
- Airport Security
- Building Maintenance
- Airport Shuttle
- Airport Parking
- **Power Plant**
- Heating/Cooling



Global Airport Architecture System - Conceptual

Airport Network System (ANS) Large scale multi-airport domain network

- Shared brokered network
- Each domain hosts regional airports
- Distributed/federated system
- Data exchange model
- Cloud enabled
- Information offered to:
 - ANSP
 - Airlines
 - Cargo
 - Airports
 - Passengers



4. Requirements Development

Requirement Analysis

Port Authority Requirements - Sample

FAR 139 Safety Inspection

- Navigational Aids System Maintenance
- Signage
- Pavement Management System
- FOD management
- AOA Incident Reporting
- AOA Restricted Area Access Control
- Work Order Generation, Dispatch & Verification
- Snow Removal Monitoring and Ice Control
- Weather Monitoring
- Wildlife Management System
- Construction Management System
- Vehicle Inspections (outside Air Field)
- Vehicle Inspections (inside Air Field)
- Building room Inspections
- Rules and regulation enforcement

Requirements

Availability: 0.9999

Duplicity: full duplex

Latency: 50 msec

- Throughput: 64 kbps

Symmetry: Full symmetry

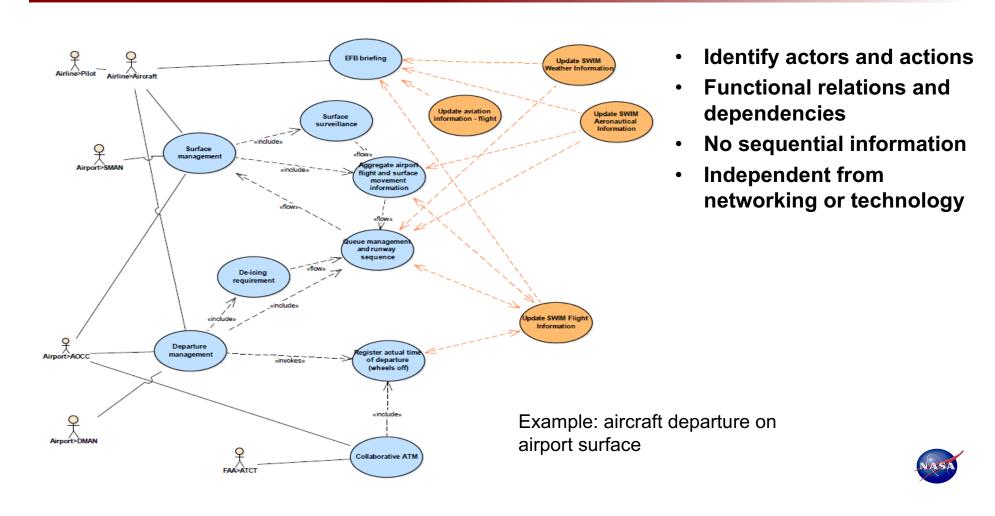
Content: text/light graphics

Transport Protocol: TCP/IP

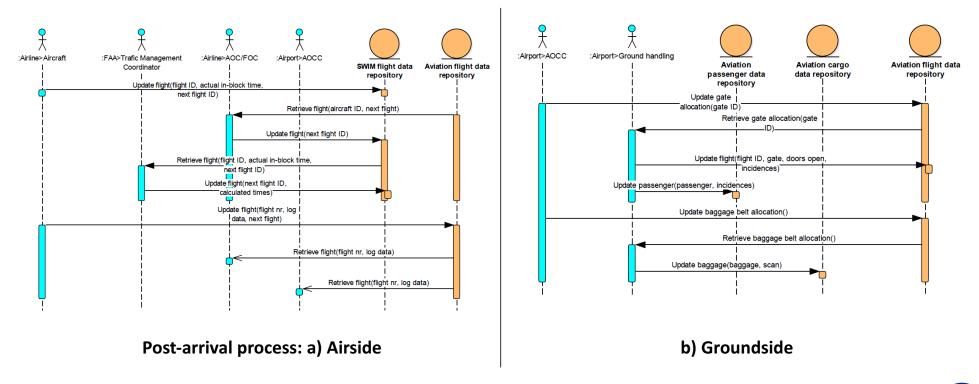
Interface: Ethernet

Service Recovery: Medium Priority

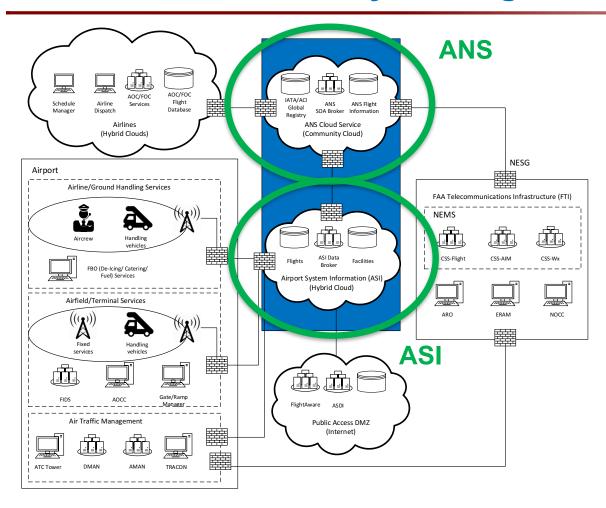
Source Equipment: varies


Sink Equipment: Server

5. Use Cases & Information Flows



Use case analysis: Use case diagrams


Use case analysis: Information flow diagrams

- Show the sequence of message exchanges required to execute the nominal case of a use case
- Independent from lower level network components

Use case analysis: Logical architecture

- Defines essential elements and functions to support use cases and information flows
- Data consumers, producers and processors

6. Future Work and Conclusion

Tasks FY-2017

Concept Exploration Definition

- Communications Link Evaluation
 - Wired and Wireless Communications Technology Identification
 - Wired and Wireless Communications Technology Selection
 - Wired and Wireless Communications Technical Parameter Definition

Information Exchange Architecture

- Scenario Development
- Data loading Model Development
- Architecture Development
- Simulation Tool Assessment and Selection

Conclusion

- Implementation of information sharing infrastructure and technologies will greatly enhance real time decisionmaking and enable Airport System context awareness.
- Airport Context Awareness will enable airport users to identify who is using services/facilities, what resources are in use, state of resources, operational service limitations, capacity management and others.
- Airport System context awareness will enable **Precision** Operations

