

Solar Sail Propulsion

July 26, 2018

Les Johnson Science and Technology Office

A Bit About Me: The Long and Winding Road

Within NASA, your acceptance of new technologies depends upon where you sit.

We tend to think of space as being

Space Is NOT Empty. We can use the environments of space to our advantage

Just As Sailing Ships Can Use the Momentum of the Wind

Spacecraft Can Use the Momentum of Sunlight

Solar Sails Derive Propulsion By Reflecting Photons

Solar sails use photon "pressure" or force on thin, lightweight, reflective sheets to produce thrust.

Real Solar Sails Are Not "Ideal"

Thrust Vector Components

Solar Sail Trajectory Control

Solar Radiation Pressure allows inward or outward Spiral

Solar Sails Experience VERY Small Forces

Echo II 1964 Solar thrust effect on spacecraft orbit

When folded, the satellite was packed into the 41-inch diameter canister shown in the foreground.

- 135-foot rigidized inflatable balloon satellite
- laminated Mylar plastic and aluminum
- placed in near-polar Orbit
- passive communications experiment by NASA on January 25, 1964

Znamya (Space Mirror)

Interplanetary Kite-craft Accelerated by Radiation of the Sun (IKAROS)

Space Sail Missions Flown (as of July 11, 2018)

Planned Solar Sail Missions (as of July 11, 2018)

CU Aerospace (2018) Univ. Illinois / NASA

Earth Orbit Full Flight

3U CubeSat 20 m²

LightSail-2 (2018) The Planetary Society

Earth Orbit Full Flight

3U CubeSat 32 m² Near Earth Asteroid Scout (2020) NASA

Interplanetary Full Flight

6U CubeSat 86 m²

Near Earth Asteroid Scout

NEA Scout

The Near Earth Asteroid Scout Will

- Image/characterize a NEA during a slow flyby
- Demonstrate a low cost asteroid reconnaissance capability

Key Spacecraft & Mission Parameters

- 6U cubesat (20cm X 10cm X 30 cm)
- ~86 m² solar sail propulsion system
- Manifested for launch on the Space Launch System (EM-1/2020)
- 1 AU maximum distance from Earth

Leverages: combined experiences of MSFC and JPL with support from GSFC, JSC, & LaRC

Target Reconnaissance with medium field imaging Shape, spin, and local environment

Close Proximity Imaging Local scale morphology, terrain properties, landing site

survey

Baseline Target Asteroid: 1991 VG

Near-Earth Asteroid 1991VG (marked with green lines) on 2017 May 30. This is a composite of several images obtained with the ESO VLT. The images have been combined in 7 stacks tracking the position of the asteroid, resulting in the object appearing as 7 dots as it moves in front of the background stars. The stars appear trailed due to the motion of the asteroid during each series. Credit Hainaut/Micheli/Koschny

- Diameter ~ 5 -12 meters
- Rotation period between a few minutes and less than 1 hour
- Unlikely to have a companion
- Unlikely to retain an exosphere or dust cloud
 - Solar radiation pressure sweeps dust on timescales of hours or day

Near Earth Asteroid Scout Mission Overview

NEA Reconnaissance <100 km distance at encounter 50 cm/px resolution over 80% surface SKGs: volume, global shape, spin properties, local environment

Target Detection and Approach: 50K km, Light source observation SKGs: Ephemeris determination and composition assessment

Close Proximity Science High-resolution imaging, 10 /px over >30% surface SKGs: Local morphology Regolith properties

NEA Scout Approximate Scale

Active Mass Translation (AMT) Overview

24

Problems and Challenges

- NEA Scout's center of mass (CM) and center of pressure (CP) are not collinear with the estimated thrust vector. This creates a <u>disturbance torque</u>. Furthermore, the CP is fore of the CM, creating a naturally unstable vehicle and necessitating an active control mechanism.
- Little mass and volume available. This challenge is compounded by the vehicle's total mass (14 kg) and volume (6 Liters) requirement. The AMT was originally given 250 grams and a volume of 226 x 105 x 17 mm (400 cc). This <u>volume</u> and <u>mass</u> will include: an X-Y translation stage, thermal controls, limit switches, and a wire harness. The <u>wire harness</u> must pass through the AMT and survive exposure to <u>deep space environments</u>.

Concept of Operations Overview

Potential Future Solar Sail Applications (A Partial List!)

Earth Pole Sitting

Heliophysics & Out of the Ecliptic Science

NEA Reconnaissance

& Small Body Science

Earth Observation Rapid Outer Solar System Exploration and Escape

© The Planetary Society/Kickstarter

Toward Higher Performance Beamed Energy Propulsion

My Real Motive...

Solar Sails: A Step Toward the Stars

Honoring the late Dr. Robert Forward, the 'father' of laser beamed energy propulsion

Questions?

