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Abstract 
 

System Value provides a mathematical representation of stakeholder’s preferences for the system. System value represents the 

utility that the system provides to the stakeholders. For a launch vehicle, important values are revenue generated through 

successful payloads, mission reliability, and the ability to accommodate payloads without modification to the payload 

instruments or spacecraft bus. This paper considers the value provided by a heavy lift launch vehicle to the satellite industry and 

to human exploration.  An estimate is developed for a generic launch vehicle value in terms of impact to the Gross Domestic 

Product. Thermo-economics are applied in the calculation of system value. Mission reliability considers both successful delivery 

and on time delivery (i.e., operational availability). Payload accommodation considers mainly the diameter of the payload fairing 

for various types of missions. 
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1. Launch Vehicle Value 

The value provided by a launch vehicle provides critical information enabling the system design to be compared 

to the expectations of the stakeholders. The value model allows project managers and engineers to see the benefits of 

different types of missions that utilize the launch vehicle, the value of various attributes of the launch vehicle 

capabilities, and the overall value of the benefits provided by the launch vehicle. This can help resolve conflicting 

preferences between different stakeholders or between stakeholders and the development organizations expectations.  
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Nomenclature 

MTBF= Mean Time between Failures 

MAT= Maintenance Access Time 

MTTR= Mean Time to repair 

�̇�𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝑐𝑒𝑖 = 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡𝑠 

∈𝑖̇ = 𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑥𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

�̇�𝑛 = Annual zonal cost of capital expenditure and other associated costs 

V= Value of the launch vehicle 

𝑉1 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑢𝑛𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

𝑉2 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

𝑉3 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑎𝑖𝑟𝑖𝑛𝑔 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦  
 𝑉𝐿 = 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑙𝑜𝑠𝑡 

𝐿𝑅 = 𝑙𝑎𝑢𝑛𝑐ℎ 𝑟𝑎𝑡𝑒 

 

The launch vehicle attributes can be determined by analyzing the concept of operations document. A system 

attribute is a quality of the system that directly impacts the value of the system. For a launch vehicle, these are the 

attributes that effect the benefits of the supported missions. The attributes of a launch vehicle are cost, mission 

reliability, maintainability, launch availability, launch rate, launch vehicle thermodynamic efficiency, and fairing 

geometry. The attribute of cost is total cost of the system (manufacture, design, and launch) and it is the attribute that 

links all of the others together (see fig. 1).  Mission reliability is the percentage number which takes into account the 

successful launch of the launch vehicle, the successful achievement of the ascent target, and the successful 

achievement of the payload mission. The launch rate is the number of launches per year. The launch rate is driven by 

planetary windows, and commercial business needs. 

Launch availability can be calculated using a Discrete Event Simulation (DES). The system simulation takes into 

account the various factors affecting the launch vehicles ability to launch as planned. These factors include weather, 

range safety, launch vehicle subsystem failures and repair, maintenance operations, and the ability to have the vehicle 

at the launch pad based on manufacturing and assembly schedules. 

The relationships between the attributes, whether they are independent or dependent of each other, and how 

important each attribute is to the overall system is illustrated in Fig. 1. This model indicates mission reliability is 

dependent on launch availability. 

2. Thermo-Economics 

Thermo-economics is based on calculating the cost of the system based on the system thermodynamics. Thermo-

economics integrates the laws of thermodynamics with economic theory. Thermo-economics states that the total 

annual cost of inputs, and the total annual capital expenditures of a system can be added together to calculate a system’s 

cost per year. The cost relationship for a launch vehicle is defined by Equations (1) – (8). These equations are based 

on the manufacturing base producing multiple discrete units, not a continuous flow of products (like gasses or liquids) 

and not a single unit (such as a building).i   
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Fig. 1. Launch Vehicle Attributes Related to System Value 

 

�̇�𝑇 = ∑ 𝑐𝑒𝑖 ∈𝑖̇𝑖 + ∑ 𝑍�̇�𝑛                    (1) 

       

The components (𝑐𝑒𝑖 𝑎𝑛𝑑 ∈𝑖̇  ) of the objective function are defined as, 

 

𝑐𝑒𝑖 =
$

𝐽
 ,                              (2) 

 

 ∈𝑖̇ =
𝐽

𝑦𝑟
 .                              (3) 

 

For a rocket, the cost and exergy terms relate to the propellant cost and energy provided during combustion, 

 

𝑐𝑒𝑖 =

$

𝑘𝑔

𝐽/𝑘𝑔
→ (

𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑐𝑜𝑠𝑡

𝑒𝑥𝑒𝑟𝑔𝑦
) = $/𝐽                 (4) 

 

∈𝑖̇ =
𝑘𝑔

𝑦𝑟
(

𝐽

𝑘𝑔
) → (

𝑚𝑎𝑠𝑠

𝑦𝑒𝑎𝑟
) ∗ 𝐻𝐻𝑉 =

𝐽

𝑦𝑟
.                 (5) 

 

Z_n is based on both the unit cost and the manufacturing base cost each year.  

 

𝑍�̇� =
$

𝑦𝑟
→

𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡+𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑛𝑔 𝑏𝑎𝑠𝑒 𝑐𝑜𝑠𝑡

𝑦𝑟
                 (6) 

 

where  

 
𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡

𝑦𝑟
= 𝐿𝑅 ∗ 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡.                 (7) 

 

Therefore 
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 𝑍�̇� = 𝐿𝑅 ∗ 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 +
𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑛𝑔 𝑏𝑎𝑠𝑒 𝑐𝑜𝑠𝑡

𝑦𝑟
.               (8) 

3. Mission Reliability 

Reliability, Availability, and Maintainability (RAM)ii are also important factors in the value of the launch vehicle 

to the stake holders.  Operational availability, A0, is defined as: 

 

𝐴𝑂= MTBF/(MTBF+M).                   (9) 

 

 

𝐴𝑂 =  
𝑈𝑝𝑡𝑖𝑚𝑒

𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 .                 (10) 

 

 A0 is used when considering the effects of both the design and the support system on availability. The equations 

used for launch reliability, flight reliability and maintainability are the classical definitions: 

 

𝑅𝑓𝑙𝑖𝑔ℎ𝑡 =  
# 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠

# 𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
                 (11) 

 

And  

 

𝑅𝑙𝑎𝑢𝑛𝑐ℎ =  
#successful launches

# 𝐿𝑎𝑢𝑛𝑐ℎ 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
.               (12) 

 

The maintainability for a launch vehicle is defined as  

 

M = MTTR+MAT.                  (13) 

 

The overall mission Reliability can thus be defined for a launch vehicle as, 

 

 𝑅𝑚𝑖𝑠𝑠𝑖𝑜𝑛  (𝑅𝑚) = 𝑅𝑙𝑎𝑢𝑛𝑐ℎ ∗ 𝐴𝑂 ∗ 𝑅𝑓𝑙𝑖𝑔ℎ𝑡 .               (14) 

4. Revenue Value 

Launch vehicle missions can be crewed or cargo missions.  Launching satellites into Earth orbit is a standard launch 

vehicle cargo mission. The launch vehicle benefits for a satellite can be determined based on values provided by the 

Satellite Industry Association (SIA) and published in their annual report for the preceding year iii. The values in the 

report do not account for inflation rates and so must be adjusted for inflation. 

 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑃(1 + 𝑖)𝑛.                (15) 

 

Considering a launch vehicle example, there are 3 preferences considered for a launch vehicle (there may be others 

beyond those considered in this example). These are revenue, mission reliability, and payload capacity. A heavy lift 

launch vehicle is considered here with a flight rate of 2/year.  

The first preference considered is the revenue that can be obtained from use of the launch vehicle to perform certain 

missions. Cargo missions are a large portion of the current launch vehicle market, placing satellites in orbit for various 

purposes. Satellite revenue for 2016 was P=$127.7 billion. With the average annual inflation rate serving as the interest 

rate, i =2.22% , the actual revenue is $130.5 billion in 2017 $ (n = 1).  Using the percentages shown in Fig. 2, the 

values in Table 1 were calculated by multiplying the total revenue of $130.5 by the percentage of the selected 

functions. The earth observation percentage of 19% was used to determine the monetary value for optical sensing. 

Interplanetary mission value was assumed to be 5% of the scientific function. The benefit of the astronomical telescope 
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was based on the value of space observation (1%). The value of the payloads for the satellite and launch vehicle 

missions represent the benefits of the missions minus the cost of the missions.  

 

Fig. 2. 2017 Satellite Industry Report Satellite Mission Type Distribution 

 

Table 1.  Value of Satellite Benefits 

  

Table 2 shows the benefits for different types of missions. The scientific benefit was calculated taking the sum of 

the monetary value from optical sensing, interplanetary missions, and astronomical telescopes in Table 1. The benefit 

of commercial services is the same as commercial communications shown in Fig. 1. The resource mining benefit is 

the profit from one tungsten mine (a mineral that has high potential in planetary and asteroid mining). The benefit of 

human exploration was calculated by taking percentage estimates from the U.S. gross domestic product (GDP) as 

broken down in Table 3. The premise, is that human exploration provides value in several different ways that feed 

growth in the national GDP. Table 3 shows the calculation of the benefit of human exploration. The total benefit for 

human exploration is the sum of the four components.  

 

Table 2. Launch Vehicle Benefits for Various Mission Types 
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Table 3. Human Exploration Benefits to the United States Economy 

  

The following assumptions were used in the construction of the benefit of human exploration. 

 

 The time reference for the human exploration benefit is 100 years, the given numbers are only estimates. 

 National renown was chosen as 6% and was assumed to be the impact of the moon landing on the United 

States’ political influence. 

 Extended science and medical advancement are 10% assumed to be the possibility of a scientific 

breakthrough happening in the span of 100 years. 

 The percentage for technological gains was chosen since as 2016 the internet’s impact of the U.S. GDP is 

5.62% 

 

In order to calculate V1 the value of Ct must be determined from Equations (1) – (8). The value of Ct is found from 

the launch vehicle stages propellant cost/mass (i.e., $/lbm or $/Kg) (e.g., liquid hydrogen, kerosene (RP-1), liquid 

oxygen, PBAN or HTPB). The Defense Logistics Agency has a standard price listing for various propellants.iv  

 

The values of cei and∈i of each fuel type (liquid hydrogen, liquid oxygen, RP-1, and SRM propellantv) are found 

from Equations (4) and (5) using the appropriate values from Table 4. Zn is calculated from Equation (8).  Using the 

manufacturing base cost for a typical heavy launch vehicle and a flight rate of 2/year yields Zn = 2.21 $B/yr.  Ct is 

calculated from Equation (1) yielding a value of Ct as $2.26 $B/yr. 

 

Table 4.  $/kg values for Launch Vehicle Propellants 

  

 

With the system cost, Ct, known the value of the launch vehicle, V1, can be calculated by subtracting the launch 

vehicle benefit (shown individually in Table 2) from the launch vehicle cost, Ct. The benefits in Table 2 are used to 

provide 4 separate values for the launch vehicle as shown in Table 5.  These calculations assume a flight rate of 2 per 

year with one flight being used in each category (i.e., Scientific, Commercial, Mining, Human Exploration) every two 

years. Note that the value of resource mining is negative indicating that one launch every two years to support a single 

mine is not valuable at the assumed benefit generated by the mine.  Instead, it would take 366 tungsten mines in order 

to provide neutral value for one launch every two years. This indicates the mining of minerals on other solar system 

bodies would need to be on a planetary scale and not individually sustainable at current launch costs.  
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Table 5. Launch Vehicle Value 

 

5. Mission Reliability Value 

The second preference considered is the reliability of the launch vehicle to successfully complete the mission on 

the stakeholder’s schedule. The value for mission reliability is calculated using Equation (14) using the values shown 

in Table 6.  

Table 6.  Launch Vehicle Mission Reliability 

Parameter Quantity 

Launch Probability (Rlaunch) 90% 

Flight Reliability (Rflight) 99% 

Availability (A0) 95% 

Mission Reliability (Rm) 84.65% 

 

Now that 𝑅𝑚 is known, the value of the mission reliability, 𝑉2, for each of the mission types in Table 2 can be 

calculated as, 

 

 𝑉2 = (𝑅𝑚)(𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝐵𝑒𝑛𝑒𝑓𝑖𝑡)               (16) 

 

Table 7 gives the value of mission reliability for each type of satellite mission and the total value for a mission 

reliability of 84.65% (on time and successfully deployed).  

 

Table 7.  Value of Mission Reliability for Satellite Mission Types 

 
 

Related to the value of successfully completing the mission as requested by the stakeholder, is the cost of the loss 

of the mission. The value of the loss is calculated as, 

 

 𝑉𝐿 = (1 − 𝑅𝑚)(𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝐵𝑒𝑛𝑒𝑓𝑖𝑡) + Unit Cost + Satellite Cost.          (17) 

 

Table 8 shows the value lost for a mission not successfully completed. Not that this is not only the cost of the 

launch vehicle and satellite, but also the revenue and other aspects lost due to mission failure. 
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Table 8.  Lost Value of Unsuccessful Satellite Missions 

 
 

The system value model can also help understand the difference that system reliability makes on the benefit 

provided by the system.  For example, if mission reliability where increased from 84.65% to 96% the system value 

increases based on a higher benefit return. Table 9 shows the increase is system value when the mission reliability (on 

schedule and successfully) is increased to 96%. The value of the launch vehicle increases by $8,893,345,462.  Thus 

an 11.35% increase in reliability yields almost $9B in increased value.  This is an increase of $783,209,640.00 for 

every 1% reliability increase. 

Table 9.  Value of 96% Mission Reliability 

 

6. Payload Accommodation Value 

The third preference considered is the value, V3, to accommodate larger diameter payloads. This is calculated 

looking at changes in fairing diameter. The change in the diameter enables a larger class of payloads to be 

accommodated such that the increased value in the larger payload is related to the diameter as shown in the 

relationship,   

 

 𝑉3 = ∆𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ∗ (
Δ𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝑚𝑒𝑡𝑒𝑟
).                     (18) 

 

To evaluate the differences, value was calculated for 4 meter, 5 meter, 8 meter, and 10-meter payload fairing 

diameters. The 4-meter fairing is of value primarily to commercial communications.  40% of interplanetary satellites 

and 50% of optical sensing satellites are also assumed to be accommodated by this fairing diameter. The 5-meter 

fairing increases the value to the optical sensing satellites, providing room for larger monolithic mirror diameters. 

90% of interplanetary mission are assumed to be accommodated by this larger fairing.  Interplanetary missions gain 

benefit from an 8-meter fairing supporting the larger satellite dimensions when deploying landers or rovers.  This 

fairing also allows for larger satellite busses to accommodate more instruments (and thus more measurements). 10% 

of the interplanetary satellites are assumed to benefit from this diameter. The 10-meter fairing is of most value to 

astronomical telescopes where large diameter monolithic mirrors are needed to reduce development costs and increase 

imaging capabilities for distance astronomical phenomena including identification of terrestrial planets around other 

stars. The value changes assume the larger fairings still provide the same value for the smaller satellites. Table 10 

shows the percentage of satellite missions supported by the different fairing diameters. Table 11 shows the value of 

each fairing diameters to the various satellite mission types. 
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Table 10.  Percentage of Satellite Market Supported by Different Fairing Sizes 

  

Table 11.  Value to Satellite Market of Different Fairing Sizes 

  

Looking at the delta total values in Table 11, it is noted that the biggest value increase for the satellite market is 

from the 4-meter to the 5-meter fairing at a value of $15,664,192,800.00.  The increase from 5-meters to 8-meters 

yielded a smaller increase of $783,209,649.00 (or $261,069,880/meter).  The 10-meter fairing yielded an increase of 

$1,174,814,460 (or $587,407,230/meter). Thus, the 5-meter fairing has the most increase in value over the other fairing 

dimension.  The 8-meter fairing has only a modest increase over the 5-meter fairing.  The 10-meter fairing provides 

more value in total and in overall increase to the heavy lift launch vehicle has compared to the 8-meter fairing.  

7. Summary 

Table 12 gives the 3 preference values calculated for the heavy lift launch vehicle with a 10-meter fairing. Future 

research will consider weighting and the proper way to combine the value generated by each of the 3 preferences 

considered into a total value for the system.  The weighting takes into account the importance of a specific system 

characteristics to the stakeholder. Properly combining the values must take into account the relationship of the system 

characteristics that are common across multiple value preferences (i.e., common to two or more of the values V1, V2, 

and V3). This prevents unintentional inflating of the total system value when combining the preferences.   

  

Table 12.  Preference Values for a Heavy Lift Launch Vehicle with 10-meter Fairing 
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