

The On-Orbit Electromagnetic Environment for NASA Spacecraft

2018 DoD E3 Review

Presenter: Matthew McCollum

Co-Authors:
Jonathan Mack
Jarrod Fortinberry

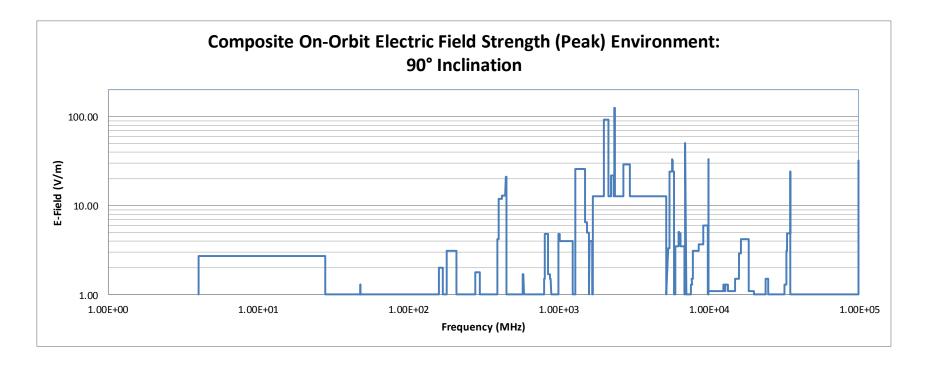
May 9, 2018

Agenda	Presenter Matthew McCollum	
	Date	5/9/2018

- Background
- STS Environment 1985
- NASA CR-4776 1995
- MIL-STD-464 & -464A Environment
- Space Shuttle Study
- NASA Environment 2006
- MIL-STD-464C
- Comparisons
- Conclusion

Background Presenter Matthew McCollum Date 5/9/2018 Page 3

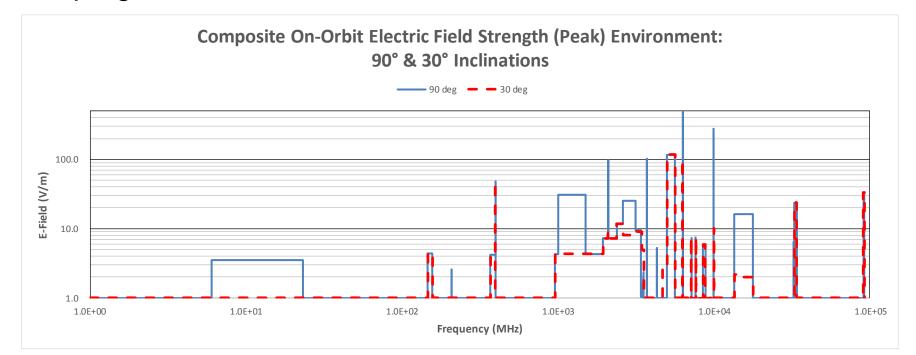
- Prior to the 1997 publication of MIL-STD-464, there was not a defined electromagnetic environment (EME) for space and launch vehicles
- NASA identified a need for an on-orbit EME definition as early as the mid-80s
 - Although each spacecraft-generated EME is unique, an environment due to ground-based emitters is applicable to all spacecraft



STS Environment - 1985

Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 4

- USAF funded report developed by the EMC Analysis Center to support Space Shuttle operations
 - Data provided peak on-orbit EME for 30°, 60°, & 90° inclination and 100 250 nautical mile (nm) altitudes



NASA CR-4776 - 1995

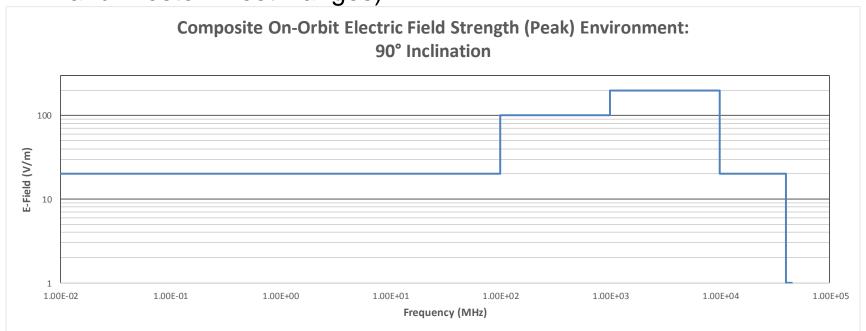
Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 5

- NASA CR-4776, Provided on-orbit EME for 30°, 60°, and 90° inclinations and altitudes from 100 nm to 2000 nm
- Effort funded by NASA's Space Environments and Effects Program to provide on-orbit information to aid the International Space Station and other NASA spacecraft programs

MIL-STD-464 & -464A Environment

Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 6

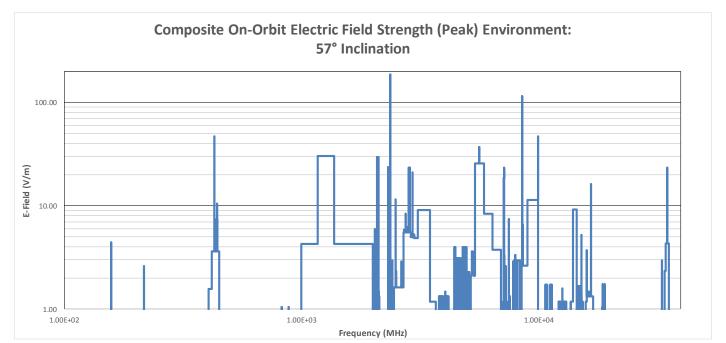
- MIL-STD-464, published in 1997, provided first on-orbit EME for spacecraft and launch vehicles
 - Documents superseded by 464 provided no spacecraft or launch vehicle specific environment
 - MIL-STD-1541, EMC Requirements for Space Systems, provided no on-orbit EME for spacecraft
- -464 Basic, Appendix A explained environment "derived from an analysis of emitters near launch sites and potential illumination of space vehicles in orbit."
 - No further information given as to how the environment was derived



MIL-STD-464 & -464A Environment

Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 7

- MIL-STD-464A contained the same spacecraft and launch vehicle EME as -464 basic
 - -464A environment based on information from NASA CR-4776 (200 nm altitude, 90° inclination) and launch site environments (Eastern and Western Test Ranges)



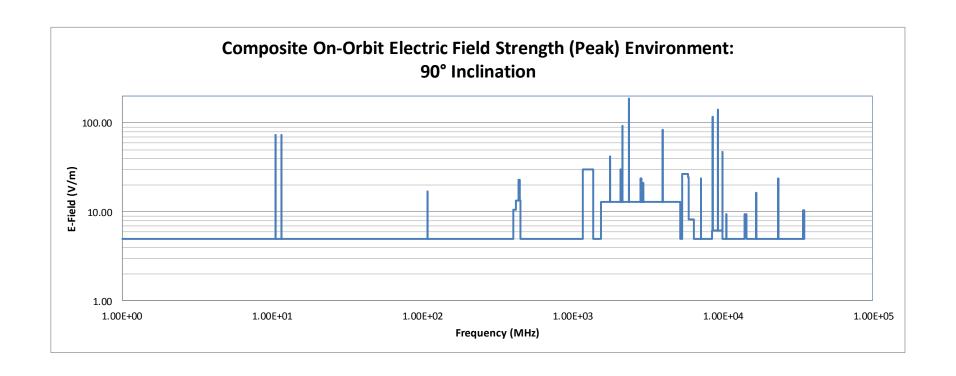
Space Shuttle Study

Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 8

- In 2000, the Joint Spectrum Center delivered JSC-CR-009, Radio-Frequency Environments for Space Shuttle Launch, Landing, and On-Orbit Scenarios, to the Johnson Space Center to support Space Shuttle operations
- Study evaluated environment for Kennedy Space Center's LC-39 launch site, on orbit operations (100 nm and 57° inclination), as well as Shuttle nominal and abort landing sites (not shown)

NASA Environment - 2006

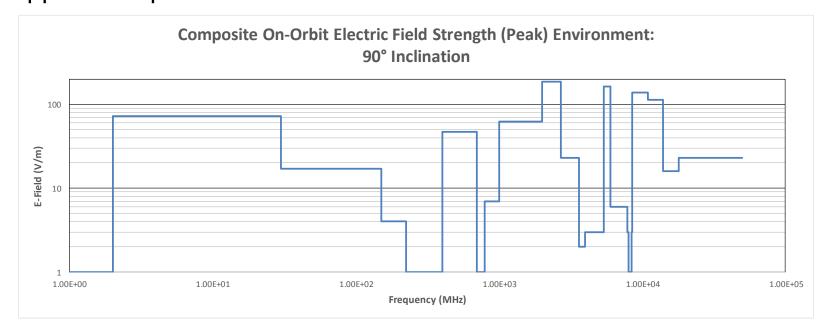
Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 9


- Marshall Space Flight Center (MSFC) requested that the Joint Spectrum Center evaluate the radio frequency (RF) launch and on-orbit environments for the Crew Launch Vehicle
- Evaluation used a modified version of the approach used in the 2000 Shuttle Study
- Evaluation looked at emitters capable of generating 5 V/m at 100 nm at 57° and 90° inclinations
 - Documented in JSC-CR-06-041 and JSC-CR-06-070
- Data later used to support development of Space Launch System and Orion spacecraft

NASA

NASA Environment - 2006

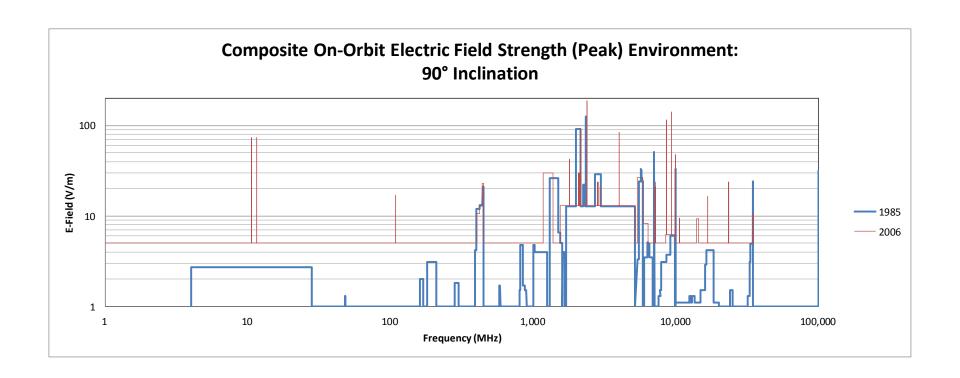
Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 10



MIL-STD-464C

Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 11

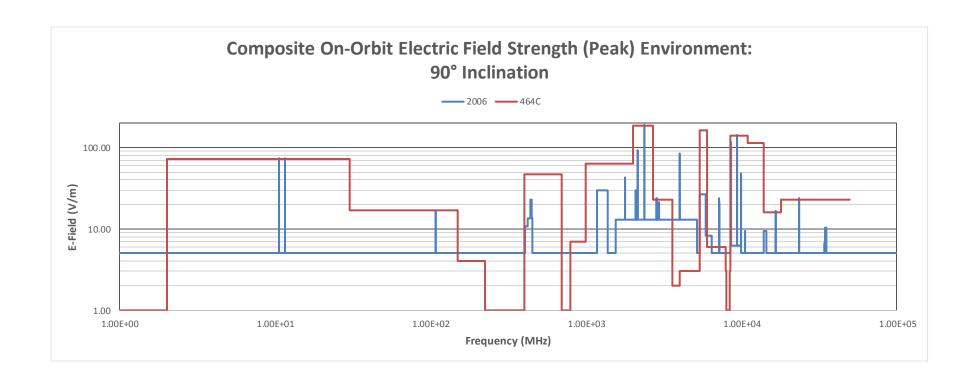
- MIL-STD-464C updated -464A a spacecraft and launch vehicle EME
 - Update provided both peak and average E-field levels
- Appendix A states the levels are derived from the EME levels for space systems in a 100 nm orbit and the composite EME levels 1 km above various launch and recovery sites
 - No orbital inclinations are provided
- Appendix A points the reader to the classified MIL-HDBK-235-3



Comparisons

Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 12

 The on-orbit EME is changing, both amplitude and number of peaks, particularly above 1 GHz



Comparisons

Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 13

 The -464C EME envelopes much more of the spectrum than the 2006 NASA environment

Conclusion Presenter Matthew McCollum Date 5/9/2018 Page 14

- On-orbit environment levels are increasing, with more of the peak levels moving to frequencies higher than 1 GHz
- MIL-STD-464C defines a much harsher environment than the 2006 NASA environment
 - -464C does not differentiate between the on-orbit environment that a spacecraft must survive from the launch vehicle environment
 - Assumptions used to define -464C environment are contained in classified document

Conclusion (continued)

Presenter	Matthew M	lcCollum
Date	5/9/2018	Page 15

- The -464 environments could be improved by:
 - Separating on-orbit environments from launch site environments and
 - Parsing on-orbit environments by inclination angle
- The benefit is potentially reducing cost of spacecraft development by not having to demonstrate compatibility with on-orbit environments it is unlikely to encounter