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The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5-kW Hall 
thruster is the subject of extensive technology maturation by NASA GRC and JPL in 
preparation for development into a flight propulsion system. As part of this on-going effort, 
a series of three wear tests have been conducted to identify erosion phenomena and the 
accompanying failure modes as well as to validate service-life models for magnetically-
shielded thrusters. This paper presents an overview and summary of the results obtained 
over the first 1715 h of the third wear test, which has the overall goal of serving as a 
pathfinder to identify and correct design or facility issues prior to the flight qualification 
campaign. Overall, negligible changes in performance and stability are observed as a 
function of operating time as well as relative to previous wear tests. Erosion of the inner and 
outer front pole covers is shown to vary by 76-300% as a function of discharge voltage and 
by up to 40% as a function of magnetic field strength. Shifting the cathode position 
upstream relative to the pole covers is shown to reduce keeper erosion rates by 84%, which 
supports this approach for mitigating the elevated keeper wear observed during previous 
wear tests.  

I.Introduction 

 
ASA continues to evolve a human exploration approach for beyond low-Earth orbit and seeks to do so, where 
practical, in a manner involving international, academic, and industry partners [1]. Towards that end, NASA 
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publicly presented a reference exploration concept at the Human Exploration and Operations Mission Directorate 
(HEOMD)  Committee of the NASA Advisory Council meeting on March 28, 2017  [2]. This approach is based on 
an evolutionary human exploration architecture, expanding into the solar system with cis-lunar flight testing and 
validation of exploration capabilities before crewed missions beyond the Earth-Moon system and eventual crewed 
Mars missions.  
 High-power solar electric propulsion is one of those key technologies that has been prioritized because of its 
significant exploration benefits. Specifically, for missions beyond low Earth orbit, spacecraft size and mass can be 
dominated by onboard chemical propulsion systems and propellants that may constitute more than 50 percent of the 
spacecraft mass. This impact can be substantially reduced through the utilization of Solar Electric Propulsion (SEP) 
due to its substantially higher specific impulse. Studies performed for NASA’s HEOMD and Science Mission 
Directorate have demonstrated that a 40-kW-class SEP capability can be enabling for both near term and future 
architectures and science missions [3]. In addition, a high-power, 40 kW-class Hall thruster propulsion system 
provides significant capability and represents, along with flexible blanket solar array technology, a readily scalable 
technology with a clear path to much higher power systems. 

Accordingly since 2012, NASA has been developing a Hall thruster electric propulsion string that can serve as 
the building block for realizing a 40-kW-class SEP capability. The Hall effect thruster (HET) system development, 
led by the NASA Glenn Research Center (GRC) and the Jet Propulsion Laboratory (JPL), began with maturation of 
the NASA Hall Effect Rocket with Magnet Shielding (HERMeS) and power processing unit. The technology 
development work has transitioned to Aerojet Rocketdyne via a competitive procurement selection for the Advanced 
Electric Propulsion System (AEPS) contract. The AEPS contract includes the development, qualification, and 
delivery of multiple flight electric propulsion strings. The AEPS Electric Propulsion (EP) string consists of the Hall 
thruster, power processing unit (including digital control and interface functionality), xenon flow controller, and 
associated intra-string harnesses. NASA continues to support the AEPS development by leveraging in-house 
expertise, plasma modeling capability, and world-class test facilities. NASA also executes AEPS and mission risk 
reduction activities to support the AEPS development and mission application. 

As part of this effort, NASA has completed two wear tests to identify erosion phenomena and the accompanying 
failure modes as well as to validate service-life models for magnetically-shielded thrusters. These tests utilized two 
different technology demonstration unit (TDU) thrusters with similar designs, but different cathode configurations. 
The first began in 2016 and accumulated approximately 1700 hours of operation using the TDU-1 thruster at the 
nominal operating condition (600 V, 12.50 kW) [4]. In this test, the cathode keeper was positioned upstream of the 
inner front pole cover, and negligible keeper erosion was observed [4, 5].  

The second wear test was performed in 2017 with the TDU-3 thruster and is referred to as the TDU-3 Short 
Duration Wear Test (SDWT) [5]. Instead of one long segment, the SDWT was divided into a series of seven short 
duration segments each lasting for approximately 200 hours at a different thruster operating condition [5]. For all of 
these segments, the keeper was coplanar with the downstream surface of the inner front pole cover, which represents 
a downstream shift relative to the TDU-1 position by a distance approximately equal to the thickness of the inner 
front pole cover [5]. Despite this small shift, results from the SDWT indicated average keeper erosion rates of 
approximately 80 µm/kh at the same operating condition used for the TDU-1 wear test, which were the largest rate 
observed for any thruster component during the SDWT [5]. Taken together with the results from the TDU-1 wear 
test, these measurements suggest that the axial position of the cathode can impact keeper erosion rates and, in part, 
motivate the need for a third wear test in order to identify and characterize such sensitivities. 

This work presents an overview and summary of the results obtained to date from the third wear test (named the 
TDU-3 Long Duration Wear Test or TDU-3 LDWT), which began in October 2017. This test has three overall 
goals. The first is to provide additional insight into thruster performance, stability, plume, and wear trends over 
extended periods of operation in order to identify any potential issues that can be corrected in the final AEPS HET 
design. Towards that end, the cathode was returned to the position used during the TDU-1 wear test (i.e., upstream 
of the inner front pole cover), but the keeper thickness was doubled in order to investigate this as an approach for 
mitigating the elevated keeper wear observe during the SDWT [5].  

The second goal of the TDU-3 LDWT is to further quantify the impact of facility backsputter on thruster 
operation in order to determine if any further design refinements are required to limit AEPS hardware sensitivity to 
extended operation during ground testing. Finally, this test is designed to serve as a pathfinder for the planned life 
and qualification testing of the hardware to be delivered as part of the AEPS contract as well as two novel 
diagnostics intended for use as part of the qualification campaign: a thrust vector probe and in-situ wear tool. Thus, 
the TDU-3 LDWT provides NASA the opportunity to develop the experience and procedures for operating high-
power long duration tests, as well as additional insight into the factors that influence component lifetime.     

 



II.Experimental Apparatus 

A. HERMeS TDU-3 
All experiments detailed in this work were performed using the 12.5-

kW NASA HERMeS TDU-3. The overall HERMeS design incorporates 
technologies developed by NASA over nearly two decades, including a 
magnetic shielding topology to eliminate discharge channel erosion as a 
life-limiting mechanism. The result is a significant increase in the 
operational lifetime of state-of-the-art HETs, with HERMeS being 
designed to operate at a specific impulse of 3000 s for an operational 
lifetime exceeding 50 kh [6–10].  

The HERMeS TDU-3 thruster is shown in the configuration used for 
the LDWT in Fig. 1. As discussed in the introduction, the thruster 
configuration is largely unchanged from that used during the SDWT, 
with the exception of the thickness and position of the cathode keeper [5]. 
In addition, a pair of new magnet coils were installed in TDU-3 prior to 
the LDWT. This resulted in a change in the current settings required to 
achieve a fixed magnetic field strength, but did not change the magnetic 
field shape. Although the cathode position used during the LDWT 
matches that used during the TDU-1 wear test, a number of other small 
design changes differentiate TDU-3 and TDU-1 including a change in the 
grade of boron nitride used for the discharge channel. A detailed 
description of these changes is provided in Kamhawi et al. [7]; the results 
from that work suggest they result in minimal changes to HET 
performance, stability, and plume properties.  

Xenon propellant was supplied to the thruster and the centrally-
mounted cathode using a laboratory feed system composed of stainless-
steel lines metered with commercial thermal mass flow controllers. The 
anode line was metered using a 500-sccm controller, and the cathode line 
was metered using a 100-sccm controller. All controllers were calibrated 
before and after the test using a NIST-traceable, positive displacement 
primary piston prover and have an uncertainty approximately 1% of the measurement [11].  

All power to TDU-3 was provided using a power console composed of commercial laboratory power supplies. 
The discharge was controlled using three 15-kW (1000 V, 15 A) power supplies connected in a master-slave 
configuration. The output from these supplies was connected to a laboratory wire harness with an inductance and 
capacitance of approximately 2.5 µH and 236 pF, respectively [12]. This console is equipped with a set of safety 
interlocks that allows the data acquisition or vacuum facility control system to disable power and place the thruster 
in a safe state in the event that a facility or thruster anomaly is detected. This setup is unchanged from previous 
HERMeS characterization and wear tests [4, 5, 7, 13–15].  

Following the results from the electrical configuration study performed by Peterson et al. [15], the TDU-3 
thruster body was electrically tied to the cathode, and all conductive surfaces within approximately one meter of the 
thruster exit plane were insulated using dielectric sheeting [15, 16]. This was done in order to provide better control 
over the number of electrical coupling paths between the HET and facility in the near-field [15, 16].  

Thruster telemetry was recorded continuously at a rate of 1 Hz using a multiplexed data acquisition system. End-
to-end calibrations of the laboratory power and data acquisition systems (DAQ) were performed before and after the 
test using a NIST-traceable digital multimeter. The resultant uncertainty was approximately ±0.06 V and ±0.03 A 
for measurements of voltage and current, respectively. Discharge current oscillations were measured using a 150-A 
AC/DC current probe connected to an oscilloscope; oscillations in discharge voltage and cathode-to-ground voltage 
were measured continuously using high-voltage differential probes connected to the same oscilloscope. All 
oscillation data were sampled at a rate of 1 MS/s. The root-mean-square (RMS) and peak-to-peak values were 
computed by the oscilloscope over intervals composed of 100,000 samples and recorded by the data acquisition 
system.  

B. Vacuum Facility 
All experiments detailed in this work were performed in Vacuum Facility 5 (VF-5) at NASA GRC. VF-5 is a 

cylindrical chamber measuring 4.6 m in diameter and 18.3 m in length [17]. For this test, VF-5 was evacuated using 

Fig. 1 HERMeS TDU-3 Hall thruster in 
the configuration used for the LDWT. 



a series of cryopumps. The cryopumps have a total effective pumping area of 33.5 m2 and a combined nominal 
pumping speed of approximately 700,000 l/s on xenon [17–19]. In order to obtain the lowest possible background 
pressure, the thruster was installed in the main volume of VF-5 at the same location previously used during the 
TDU-1 wear test and the TDU-3 SDWT [4, 5]. The placement of the cryopumps relative to the thruster at this 
location as well as the resultant near-field background neutral distribution is described in previous work [17–19].  

Facility pressure was monitored with two xenon-calibrated, Bayard-Alpert style hot-cathode ionization gauges. 
The first (IG#2) has a downstream-facing orifice and was mounted on a boom arm at a location approximately 0.8 m 
radially outward from the centerline of the thruster. The second (IG#3) was located approximately 0.7 m radially 
outward and centered approximately 0.08 m upstream of the HET exit plane. The orifice of IG#3 faced radially 
outward (i.e., away from the HET). Both gauges were configured for operation with electric propulsion systems and 
thus had an elbow and plasma screen installed on the inlet of the gauge [20]. The housing of each was also attached 
to facility ground via an electrical grounding strap to avoid charging effects. A thermocouple was installed on the 
exterior of each ion gauge tube, thus allowing the measured pressures to be corrected for thermal effects [21]. The 
gauge temperatures and pressures were sampled using the same multiplexed DAQ used to record thruster telemetry 
[20]. Consistent with previous tests performed in VF-5, all pressures reported in this work correspond to the 
measurements made using IG #3 [4, 5, 13–15].  

Measurements of facility backsputter were obtained using three quartz crystal microbalances (QCMs) [22]. The 
QCMs were located approximately 1 meter radially outward from the centerline of the thruster in the thruster exit 
plane. All three QCMs faced downstream and were water cooled with three parallel cooling loops from a single 
chiller. The total deposited thickness was measured by the QCM controller and recorded by the same DAQ used for 
thruster telemetry. The measured thickness was then post-processed in order to compute the average backsputter rate 
using the techniques described by Gilland et al [22].  

C. Thrust Stand 
Thrust was measured using the same null-type inverted pendulum thrust stand used in previous HERMeS 

performance characterization and wear tests [4, 5, 7, 13, 15, 23]. The design and theory of operation of the thrust 
stand are detailed in several previous works [24–26]. For this work, the thrust stand was operated in a null-coil 
configuration. In this configuration, the position of the thruster is measured by a linear variable differential 
transformer (LVDT) and maintained by a pair of electromagnetic actuators. The current through each actuator is 
controlled using an integral-differential controller that use the LVDT signal as the input and then modulate the 
current through the actuators in order to hold the thruster stationary. The thrust is then correlated to the resultant 
current through the actuators. The thrust stand is also equipped with a closed-loop inclination control circuit, which 
uses an integral controller and piezoelectric actuator to maintain the inclination measured by an electrolytic tilt 
sensor and thus minimize thermal drift during performance measurements. The thrust stand was calibrated before 
and after each performance characterization period by loading and offloading a set of known weights using an in-
situ pulley system. The thrust stand uncertainty for this work is approximately 0.8% of the measurement [27].  

D. Wear Measurements 
All erosion measurements were made with a chromatic, white-light non-contact benchtop profilometer. The 

employed profilometer is equipped with an optical pen oriented normal to the HET exit plane with a 3-mm 
measuring range. All acquired profilometry data were analyzed according to the guidance established in the ISO 
5436-1 measurement standard for a type A1 step (i.e., a wide groove with a flat bottom) [28]. A detailed uncertainty 
quantification was performed for each data point analyzed using the ISO method that accounts for instrument error, 
surface roughness, wear due to operation at points other than the nominal wear point, and the non-flat nature of the 
acquired profiles. The results of this uncertainty analysis yielded typical uncertainties on the order of ±2 µm for this 
work. 

Data acquired near the mask fasteners were not able to be analyzed using the aforementioned ISO method due to 
the interruption of the unexposed reference surface by the hole for the fastener. This resulted in a step width that was 
insufficient for this analysis technique. Data in this region were analyzed manually using commercial software 
provided by the profilometer manufacturer. This manual technique is identical to that used during previous wear 
tests and generates results that differ from those of the ISO technique by less than the measurement uncertainty. 
However, for clarity, data analyzed using the manual method are shown without error bars. It is important to note 
that all presented wear rates are computed as the total measured step height divided by the total operating time for 
that component, and therefore represent the average erosion rate over the stated interval. 



III.Results and Discussion 

A. Test Segment Overview 
All results presented in this work were acquired during the first four segments of the TDU-3 LDWT. Segment I 

was performed at the nominal TDU operating condition of 600 V, 12.5 kW and resulted in the accumulation of 1015 
h of operating time. It is important to note that this segment was interrupted by a facility anomaly and so was 
completed in two consecutive parts lasting 620 h and 395 h, respectively. Segments II-IV were all performed at the 
300 V, 6.25 kW throttle point, however, each was performed at a different magnetic field strength. Segment II was 
performed at the nominal magnetic field strength while Segments III and IV were performed at 75% and 125% of 
the nominal strength, respectively. Each of these segments lasted for between 200 and 250 hours. A summary of 
these segments is shown Table 1. Since all wear conditions used the same discharge current (20.83 A), throughout 
this work, wear conditions will be specified using the syntax xxx V/yyy B where xxx represents the discharge 
voltage and yyy is the fraction of nominal magnetic field strength.  
 Similar to the approach taken in previous TDU wear tests, continuous operation at each of the conditions listed 
in Table 1 was periodically interrupted in order to acquire performance and stability data for the reference firing 
conditions shown in Table 2. Average facility pressure was approximately 3 µTorr-Xe for operation at RFC 1 and 
4.5 µTorr-Xe for all other conditions. Overall, these characterizations resulted in the accumulation of approximately 
3% of the total operating time at throttle conditions other than the specified wear point. 

Table 1 Summary of completed TDU-3 LDWT test segments. 

Segment I II III IV 
Operating Condition 600 V/1 B 300 V/1 B 300 V/0.75 B 300 V/1.25 B 
Operating Time (h) 1015* 248 213 239 

Performance Characterization 
Intervals (h) 

0, 250, 500, 
620,1000 115, 248 0, 71, 213 0, 239 

Wear Characterization Intervals (h) 620, 1000 248 213 239 

IFPC Configuration 

New Yes Yes Yes Yes 

Material Polished Graphite Polished 
Graphite 

Polished 
Graphite 

Polished 
Graphite 

Mask 
Locations† 2 and 8 2 and 8 2 and 8 2 and 8 

OFPC Configuration 

New Yes No No Yes 

Material Polished Graphite Polished 
Graphite 

Polished 
Graphite 

Polished 
Graphite 

Mask 
Locations† 12 and 9 8 4 12 and 9 

Keeper 
Configuration 

New Yes No No No 

Material Polished Graphite Polished 
Graphite 

Polished 
Graphite 

Polished 
Graphite 

Tab Location† 11 - - 11:30 
*Completed in two parts: 0-620 hours, 620–1000 hours.  
†Mask locations listed using equivalent clock position with 12 o’clock corresponding to the top of TDU-3. For 
thruster components used in previous segments, a position is listed only if an additional mask was added or the 
original mask was modified. 
 

Table 2. Reference firing conditions used during the TDU-3 LDWT.  
RFC Discharge Voltage (V) Discharge Current (A) Discharge Power (W) 

1 300 9.00 2700 
2 300 20.83 6250 
3 400 20.83 8333 
4 500 20.83 10417 
5 600 20.83 12500 
6 630 20.83 13123 

 



B. Performance and Stability Results 
The performance of TDU-3 measured at each of the RFCs from Table 2 is shown as a function of total operating 

time in Fig. 2. It is important to note that an anomaly occurred with the inverted pendulum thrust stand during 
Segment III, which precluded obtaining accurate thrust measurements for the performance characterizations 
performed during that segment. Due to this issue, the resultant data are omitted from Fig. 2. 

As shown in Fig. 2, the measured thrust of TDU-3 varied by less than the thrust stand uncertainty for all RFCs 
throughout the completed segments. Furthermore, the variation between the measurements obtained during the 
LDWT and those acquired during the SDWT and TDU-1 wear tests are also less than the measurement uncertainty 
[4, 5]. This performance invariance is an indicator of the effectiveness of the HERMeS magnetic shielding topology 
as previous wear tests performed on non-magnetically shielded thrusters have observed a decrease in performance 
during the first approximately 1000 h of operation [29]. The decrease in performance has been attributed to erosion 
of the discharge channel walls, which is a phenomenon that is minimized by magnetic shielding [29].  

The stability of TDU-3 was assessed using the ratio of the peak-to-peak of the discharge current (IdPk2Pk) to the 
average discharge current (Id). The results are plotted alongside the thrust measurements for each of the RFCs in Fig. 
2. Similar to the performance results, the discharge current oscillations varied by less than 4% for all RFCs over the 
first four segments of the LDWT. Furthermore, the measured stability characteristics are consistent with those 
obtained during previous TDU wear and performance characterizations [4, 5, 7, 13, 15, 23]. Taken together, the 
performance and stability results indicate that TDU-3 was operating nominally throughout the LDWT.  

 

 

Fig. 2 Performance and stability of TDU-3 during the LDWT at each of the RFCs. 

C. Wear Measurements 
1. Overview 

Similar to the approach taken in previous HERMeS wear tests, the inner front pole cover (IFPC), outer front pole 
cover (OFPC), and keeper were modified in order to better characterize component erosion rates [4, 5]. In order to 
minimize the variation in pre-test surface roughness and thus provide as uniform a baseline as possible, each of these 
surfaces was polished prior to installation. In addition, graphite masks were installed to provide unexposed surfaces 
to use as a reference for post-test analysis. Two 0.5-mm thick graphite masks were installed at the 2 o’clock and 8 
o’clock locations of the IFPC. These masks are shown in Fig. 3(a) and are identical (in both dimension and location) 
to the graphite masks used during the SDWT [5]. In addition to masks, a series of four graphite bushings and screw 
caps were adhered to the bolts on the inner front pole cover in order to simulate the bosses that will be present on the 
Engineering Design Unit (EDU) thruster. These bushings are shown mounted at the 12 o’clock, 4 o’clock, 6 o’clock, 



and 10 o’clock positions on the IFPC in Fig. 3(a). It is important to note that, as shown in Table 1, a new IFPC was 
installed for each operating condition in order to avoid conflation of the measured wear rates. 
 

  
(a) (b) 

Fig. 3 Masks and bushings installed on the TDU-3 (a) IFPC and keeper and (b) OFPC. The 12 o’clock 
corresponds to the top of both photos. 

As shown in Fig. 3(b), a series of graphite strips were also affixed to the OFPC. These masks were identical to 
those used during the SDWT. Two masks were installed at the beginning of the test at the 12 o’clock and 9 o’clock 
positions. Unfortunately, the 9 o’clock mask rotated out of position during the first 250 h of operation, thus 
precluding this region from post-test analysis. Additional masks were added at the 8 o’clock and 4 o’clock positions 
prior to Segments II and III, respectively. A new OFPC with masks at the 12 o’clock and 9 o’clock positions was 
installed prior to Segment IV.  

Measurements of OFPC wear were acquired after the completion of 620 h and 1000 h at the 600 V/1 B operating 
condition as well as after the completion of the Segments III and IV. This allows direct computation of the wear 
rates for each of these operating conditions. Since OFPC wear was not measured after the completion of Segment II, 
the OFPC erosion rate for this condition could not be directly determined and is therefore omitted from the 
presented results. 

In order to provide a masked reference surface on the keeper, a graphite ring was affixed to the outer edge of the 
downstream keeper face. As shown in Fig. 3(a), a small tab was also included as part of the mask, which protruded 
radially inwards towards the cathode orifice. This tab enabled an assessment of the radial variation in erosion rates 
across the keeper face. Measurements of keeper wear were acquired after 620 h and 1000 h at the 600 V/1 B 
operating condition as well as after the completion of Segment IV. The keeper mask was rotated prior to the start of 
this last segment to expose a new region of polished graphite. This enabled direct measurements of the keeper wear 
for operation at 600 V/1 B and 300 V/1.25 B, as well as the average keeper erosion rate over the entire LDWT. Table 
1 contains a summary of the thruster configuration and wear measurements acquired for each segment. 

 
2. IFPC Wear 

Fig. 4 shows the IFPC erosion rates measured near the 8 o’clock mask during the LDWT as a function of 
normalized IFPC radius. In Fig. 4, a normalized radius of 0 corresponds to the edge of the IFPC closest to the 
cathode whereas a radius of 1 corresponds to the edge closest to the discharge channel. It is important to note that 
the truncation of the data near the inner IFPC edge is due to the fact that the employed masks only cover 
approximately 95% of the IFPC. 



 
Fig. 4. IFPC erosion rates near the 8 o’clock mask from the TDU-3 LDWT. 

Consistent with previous empirical and analytic results, for all operating conditions, the erosion rate is observed 
to minimize near the center of the IFPC and gradually increase towards the keeper and discharge channel [5, 30, 31]. 
It is important to note that, as shown in Fig. 5, the local maxima shown in Fig. 4 near a normalized radius of 0.9 
represent a continuous trend and are, therefore, not outliers. Despite the observed consistency in radial variation, the 
magnitude of the erosion rate is a strong function of discharge voltage. As shown in Fig. 4, the radially-averaged 
erosion rate increases by approximately 76% between the 600 V and 300 V conditions performed at the nominal 
magnetic field strength.  

As discussed in previous work, the observed erosion trends with discharge voltage are likely driven by shifts in 
the axial location of the acceleration region [5, 30–32]. Specifically, laser-induced florescence (LIF) measurements 
have shown that the acceleration region shifts downstream at lower discharge voltages [31]. This shift results in a 
concomitant increase in beam divergence and, thus, the number of eroding ions reaching the IFPC [5, 30, 31].  

 
Fig. 5 IFPC erosion rates near a normalized radius of 0.9 for the 300 V/1.25 B condition. 

Isolating the results from the three segments performed at 300 V provides some insight into the impact of 
magnetic field strength on IFPC wear. As shown in Fig. 6, erosion rates at this discharge voltage largely increased 
with magnetic field strength. Specifically, the radially-averaged erosion rate increased by 42% between the 0.75 B 



and 1.25 B cases, which is greater than the measurement uncertainty. This increase in erosion with magnetic field 
strength is consistent with previous results obtained for 600 V operation [5, 31]. Although true for most radial 
locations, the observed increase in erosion rates with magnetic field strength does not hold in the regions near the 
mask fastener and IFPC edges (i.e., for normalized radii less than 0.15 and between 0.55 and 0.65). However, as 
discussed previously, the measurements in these regions have a much higher measurement uncertainty due to the 
truncation of the unexposed reference surfaces by the hole for the mask fastener. Because of this, the observed 
differences in wear rates in these regions are likely artifacts of these increased uncertainties and no strong 
conclusions can be drawn.  

 
Fig. 6 IFPC erosion rates near the 8 o’clock mask for the three segments performed at 300 V. 

Previous empirical studies performed for 600 V operation have shown a similar increase in IFPC erosion with 
increased magnetic field strength, despite the upstream shift of the acceleration zone observed at elevated magnetic 
fields by LIF [5, 29, 32]. Modeling results have suggested that, for discharge voltages above 500 V, the divergence 
of the beam is never high enough to allow eroding ions to reach the IFPC, thus nullifying the mechanism by which a 
downstream shift in the acceleration zone caused an increase in IFPC erosion for operation at 300 V [30]. Instead, 
the models have shown that the higher magnetic field strength causes a concomitant increase in sheath potential at 
the pole, and therefore, an increase in energy (rather than quantity) of incident ions [30]. However, these same 
models predict that this trend should reverse for operation at 300 V, and, therefore, that the measured erosion rates 
should have decreased with increased magnetic field strength due to the upstream shift in acceleration zone [30]. 
The cause for this discrepancy is not presently known, and, as such, further investigation may be warranted.  

In addition to the impacts of discharge voltage and magnetic field on IFPC wear, the results in Fig. 4 also 
provide insight into how IFPC erosion changes over the thruster lifetime. Specifically, the erosion rates measured 
after 1000 h of operation at 600 V were lower at all radii by an average of 20% compared to those measured after 
620 h of operation. This decrease in erosion rate with time is outside of the empirical uncertainty and was also 
observed during previous wear testing of TDU-1 [4, 5]. 

Similar to the approach taken in Williams et al. [4], in order to assess the azimuthal symmetry of the IFPC wear 
mechanism, profilometry measurements acquired near the masked regions at both 8 o’clock and 2 o’clock were 
compared for each operating condition. The results are shown for two operating conditions in Fig. 7. Consistent with 
previous results, the azimuthal variation in wear rates was less than the measurement uncertainty, suggesting that the 
IFPC wear process is symmetric [4]. It is important to note that although only two data sets are shown, the observed 
trends were consistent for all operating conditions. 



 

 
Fig. 7 Comparison of IFPC erosion rates measured near the 8 o’clock (8 oc) and 2 o’clock (2 oc) masks. 

3. Keeper Wear 
As stated in the introduction, one of the motivations of the LDWT was to determine if the change in cathode 

axial position could explain the differences in wear rates measured during the TDU-1 1700 h test and the SDWT. 
Towards that end, Fig. 8 shows the keeper erosion rates measured during the LDWT and SDWT as a function of 
keeper radius. In Fig. 8, a keeper radius fraction of 0 corresponds to the cathode orifice whereas a radius fraction of 
1 corresponds to the edge closest to the IFPC. It is important to note that the truncation of the LDWT data near the 
outer keeper edge is due to the change in mask geometry relative to the SDWT and that the 1715 h LDWT data set 
corresponds to the average erosion rate over all completed test segments [5].  

 

Fig. 8 Keeper erosion rates from the TDU-3 SDWT and LDWT for operation at 600 V, 12.5 kW, and 
nominal magnetic field 

 
 



 

 

(a) (b) 

Fig. 9 3D view of the keeper after the (a) SDWT and (b) LDWT (Segment I). 

 As shown in Fig. 8, the keeper during the LDWT eroded at a radially-averaged rate of approximately 13 
µm/kh independent of operating condition, which represents a decrease of 84% relative to the results acquired 
during the portion of the SDWT operated at the 600 V/ 1 B condition [5]. Furthermore, unlike during the SDWT, no 
significant radial variation in erosion rate was observed [5]. Qualitative confirmation of these results is shown by 
features visible in the 3D renderings of the cathode keeper acquired post-test and shown in Fig. 9. Consistent with 
the results shown in Fig. 8, the elevated plateaus corresponding to the masked regions of the keeper are much less 
pronounced for the LDWT than for the SDWT. This is particularly striking as each of the unmasked regions of the 
SDWT keeper accumulated approximately one-fifth the hours of those on the LDWT keeper [5]. It is important to 
note that the surface doming observed in Fig. 9(b) was also present in pre-test scans and thus is likely an artifact of 
the pre-test polishing and not plasma exposure. Taken together, these results confirm the strong link between 
cathode position and keeper erosion rates and indicate that the upstream shift in cathode position successfully 
mitigated the elevated erosion rates observed during the SDWT.  

It is important to note that the observed keeper step sizes were too small to be processed using the ISO method 
discussed previously. Instead, as done in both previous wear tests, the keeper data were analyzed manually using 
commercial software provided by the profilometer manufacturer. As discussed in Williams, et al. [5], the SDWT 
keeper erosion data at the 600 V/1 B condition was acquired during the comprehensive performance characterization 
of TDU-3. As such, during the SDWT, TDU-3 was operated over a range of throttle conditions and magnetic field 
settings, resulting in increased uncertainty in the erosion measurements [5]. However, previous work has indicated 
that this increased uncertainty is smaller in magnitude than the wear rate reduction observed between the SDWT and 
LDWT [5]. As such, the increased uncertainty associated with non-wear point operation during the SDWT does not 
impact the overall conclusion that the upstream shift of the cathode significantly reduced keeper erosion rates.  

As discussed by Lopez Ortega, et al. [33], the decrease in keeper erosion for the upstream cathode location is 
likely due to an increase in shielding provided by the IFPC  against ions originating close to the discharge channel. 
Specifically, the upstream shift reduces the effective downstream view factor of the keeper. Since it is postulated 
that thruster ions (i.e., those born in the thruster channel, acceleration region, or near-field plume) are the primary 
cause of IFPC and keeper erosion, this reduction in view factor should reduce the number of thruster ions incident 
on the keeper, resulting in the observed reduction in keeper erosion rates [30, 33].  

 
4. OFPC Wear 

Fig. 10 shows the OFPC erosion rates measured during the LDWT as a function of normalized OFPC radius. In 
Fig. 10, a normalized radius of 0 corresponds to the edge of the OFPC closest to the discharge channel whereas a 
radius of 1 corresponds to the outer edge of the thruster. It is important to note that the truncation of the data near the 
inner edge is due to the fact that the employed masks do not cover the entire width of the OFPC. Near the outer 
edge, the mask fastener prevented the formation of a sufficiently large unexposed reference surface, thus precluding 
data analysis in this region. 
 



 
Fig. 10 OFPC erosion rates measured during the TDU-3 LDWT. 

As shown in Fig. 10, the OFPC erosion rates largely follow the same trends as those for the IFPC. Specifically, 
OFPC erosion is observed to increase beyond the measurement uncertainty as the discharge voltage is decreased 
from 600 V to 300 V and as the magnetic field strength is increased at a fixed discharge voltage of 300 V. 
Specifically, the erosion rate at 300 V/0.75 B is approximately 4 times higher, on average, at a given radius than for 
600 V. Furthermore, the erosion rate is approximately 1.4 times higher, on average, at a given radius for operation at 
300 V/1.25 B compared to 300 V/0.75 B. In addition, for all operating conditions, the OFPC erosion is shown to 
maximize near the discharge channel and then decrease with increasing radius. The observed variations in OFPC 
erosion with radial position and discharge voltage match results from previous empirical and analytic work, while 
the observed variation with magnetic field had not previously been investigated [5, 30]. 
 

 
Fig. 11 Comparison of OFPC erosion rates measured near the 12 o’clock (12 oc) and 9 o’clock (9 oc) 

masks. 

Similar to the approach taken with the IFPC, in order to assess the azimuthal symmetry of the OFPC wear 
mechanisms, profilometry measurements acquired near both the 12 o’clock and 9 o’clock masked regions were 
compared for the 300 V/1.25 B operating condition. The results are shown as a function of normalized OFPC radius 



in Fig. 11. Contrary to the IFPC results, the azimuthal variation in wear rates was greater than the measurement 
uncertainty, suggesting that the OFPC wear was asymmetric for this operating condition. However, it is important to 
note that the pre-test surface finish in both of these regions was different. Specifically, the 12 o’clock mask was 
placed over a region of polished graphite whereas the region near the 9 o’clock mask was unpolished.  

Taken together with the observed decrease in IFPC erosion rates over time, this result suggests a possible link 
between surface finish and erosion rates. Specifically, although polished pre-test, the IFPC has been observed to 
roughen after plasma exposure. Evidence of this can be seen in Fig. 12(b), which is a post-test image of the pole 
cover shown in Fig. 12(a) that shows evidence of significant roughening relative to the polished finish achieved pre-
test. Once roughened, the results in Fig. 4, suggest that the erosion rates of the IFPC decrease. If true, that would 
also explain the results in Fig. 11, where the unpolished portion of the OFPC is shown to erode slower than the 
polished portion. This possibility will be further investigated during the remainder of the LDWT. 
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Fig. 12 TDU-3 IFPC (a) before and (b) after completion of a segment of the LDWT. 

IV.Conclusion 

This work presented a summary and overview of the results acquired during the first four segments (1715 h) of 
the TDU-3 LDWT. Periodic performance characterizations performed at a set of six fixed reference firing conditions 
indicated that TDU-3 performance and stability varied by less than the measurement uncertainty throughout the test 
as well as when compared to results acquired during previous TDU performance and wear characterizations.  

Erosion of the inner and outer front pole covers was shown to be a strong function of discharge voltage and 
magnetic field strength. Specifically, erosion rates at 300 V were shown to be up to four times higher than those at 
600 V due to the higher beam divergence at the lower discharge voltage. These rates were also shown to increase 
with increasing magnetic field strength for operation at 300 V. Consistent with results from previous TDU wear 
tests, a decrease in IFPC erosion rate was shown with operating time. Observations of lower erosion rates for 
unpolished sections of the OFPC suggest that this might be caused by the roughening of the pole covers during 
operation, rather than a change in the near-field plasma properties. Finally, shifting the axial position of the cathode 
from coplanar to upstream of the IFPC resulted in an 84% reduction in measured erosion rates, thus validating this 
design approach for mitigating the elevated keeper wear observed during the SDWT. 
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