

NASA'S SPACE LAUNCH SYSTEM: DEEP-SPACE OPPORTUNITIES FOR SMALLSATS

4S Symposium

Rimberly Robinson, Ph.D.
Payloads Manager
Carole McLemore, Ph.D.
Secondary Payloads Integration Manager
Space Launch System Program
May 29, 2018

NASA'S EXPLORATION PLANS

SLS - ENABLING HUMAN EXPLORATION **EXPLORATION CLASS: DEEP SPACE CAPABILITIES**

VOLUME

- Five times more volume than any contemporary heavy lift vehicle
- Only vehicle that can carry the Orion and a comanifested payload to the Moon

8m fairing with large aperture telescope

MASS

- Block 1: Can launch 60% more mass than any contemporary launch vehicle
- Block 2: Mars-enabling capability of greater than **45 metric tons** to Trans Lunar Injection

DEPARTURE ENERGY

 Reduce transit times by half or greater to the outer solar system

SLS BLOCK 1 CONFIGURATION FOR EM-1

SOLID ROCKET BOOSTERS

ENGINES

CORE STAGE

IN-SPACE STAGE AND ADAPTERS

SAMPLE DEPLOYMENT LOCATIONS

Bus Stops 1 2 3 4 5	Description First opportunity for deployment, cleared 1st radiation belt Clear both radiation belts plus ~ 1 hour Half way to the moon At the moon, closest proximity (~240 km from surface) Past the moon plus ~12 hours (lunar gravitational assist)	Altitude (approx.) 36,507 km 70,242 km 192,300 km 395,248 km 355,807 km	Flight Time (PMA Based) 4 Hrs. 1 Min. 6 Hrs. 59 Min. 1 Days, 0 Hrs. 54 Min. 5 Days, 21 Hrs. 50 Min. 6 Days, 9 Hrs. 49 Min.	To Helio
	Note: All info based on a 5.9 day trip to the moon (PMA Trajectory) Van Allen Belts	3		

ONE LAUNCH, MULTIPLE DISCIPLINES

MOON

- Lunar Flashlight (NASA)
- Lunar IceCube (Morehead State University)
- LunaH-Map (Arizona State University)
- OMOTENASHI (JAXA)
- LunIR (Lockheed Martin)

SUN

 CuSP (Southwest Research Institute)

ASTEROID

NEA Scout (NASA)

EARTH

EQUULEUS (JAXA)

AND BEYOND

- Biosentinel (NASA)
- ArgoMoon (ESA/ASI)
- Cislunar Explorers (Cornell University)
- CU-E³ (University of Colorado Boulder)
- Team Miles (Miles Space)

ONE LAUNCH, MULTIPLE DISCIPLINES

EM-1 SECONDARY PAYLOAD CAPABILITY

Orion Stage Adapter (OSA)

SLS EVOLVABILITY

Foundation for a generation of deep space exploration

FUTURE SLS EXPLORATION MISSION OPTIONS FOR SMALL PAYLOADS

SUMMARY

- SLS provides unique opportunities for smallsats
 - Affordable access to the Moon and deep space
 - Payloads ranging from 6U/12U/27U to ESPA-class may be accommodated
- EM-1 launching in fiscal year 2020, with 13 CubeSats manifested
- Hardware for second mission in progress
- Call for next SLS CubeSat payloads planned for this summer
- Flexible architecture will meet demands of deep space exploration
 - Flight manifest may include multiple Block 1 flights

More Information

- SLS Mission Planner's Guide (ESD 30000)
 - Provides future payload developers/users with information to support preliminary SLS mission planning
 - Copies can be requested via email: NASA-slspayloads@mail.nasa.gov
 - <u>www.nasa.gov/opportunities</u> for CubeSat payload opportunities and announcements

