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Motivation

• Growth of short haul market & 
emergence of urban air mobility market

• Enabled by electrified propulsion 
systems

• Prevalence of smaller (lower torque) 
propulsors

• Most concepts use direct drive
• Geared drives are almost always mass 

optimal

Direct drive

motor
fan

+ Simpler
− Non-optimal 

motor and/or fan

Geared drive

motor
fan

gearbox

+ Optimized motor & fan
− More complex
− Potentially less reliable
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Motivation

Pros
+ High / very high 

torque/mass 
(specific torque)

+ High / very high 
efficiency

+ Mature technology

Mechanical gearing Magnetic gearing
Pros
+ Non-contact

+ No lubrication
+ Low maintenance

+ Easily integrated in 
electric machines 

+ Potentially low vibration

Cons
− Unknown limits on specific 

torque & efficiency
− Magnet temperature limit
− Individual magnet interaction 

weaker than 1 gear tooth pair− Routine & costly maintenance
− Strong tonal vibration & cabin noise

Cons
− Contact-related wear & 

failure
− Requires lubrication 

system(s)
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Background

Key historical developments 
• 1901 – 1st invention
• <1960s – primarily electromagnets
• 1966 – SmCo magnets invented
• 1983 – NdFeB magnets invented
• 2001 – Concentric magnetic gear (CMG)                

d mathematics

Why we selected CMG
• High specific torque
• Potential replacement of final stage helicopter gearing 

(cabin noise reduction)
• Easily integrated in electric machines

Mechanical 
planetary 
gear

Analogous concentric 
magnetic gear
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Principles of Operation

• Example: 4:1 gear ratio, 24 pole pairs in ring (15o wavelength), 6 magnets per pair
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• Example: 4:1 gear ratio, 24 pole pairs in ring (15o wavelength), 6 magnets per pair
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Principles of Operation

• Key design variables
• # of magnetic pole pairs (“teeth”)
• # magnets
• Radial thickness of components & air gaps

Key
Coupling path ==
Leakage path  ==

Modulator

Sun

Ring
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Technology Development at NASA

2-1/2 year project

• Create fundamental understanding

• Compare to mechanical gearing for aerospace applications

Focus areas

• Phase 1 – specific torque 

• Phase 2 – efficient high-speed operation

• Phase 3 – motor/gear integration

Progress

• Phase 1 was recently completed.

• Two prototypes were developed to understand specific torque 
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Design and manufacture of Prototype 1 (PT-1)
• Goal:  To gain design & manufacturing experience
• Electric aircraft propeller specifications: 152 mm (6 in ), ~4:1 speed reduction, 4500 rpm
• Static/2D magnetic FEA: Off-the-shelf magnets / Limited design optimization
• Printed structures

• Rapid production
• Nylon-carbon fiber composite material
• Not suitable for heat dissipation in long-duration tests

Design Sun Modulator Ring

Sun

Modulator

Ring
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Results from PT-1
Specific torque
• 2D simulation:  31 Nm/kg
• Measurement:  20 Nm/kg
• 36 % reduction

Successful assembly procedure
• Fully construct the sun, modulator, 

and ring  full hoop stiffnesses
• Use shims in air gaps to keep 

members centered  reduces 
magnetic forces

Demonstration of gear ratio

Lesson
• Magnetic forces can 

deform/damage the 
structures during assembly
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Design of Prototype 2
• Goal:  Maximize specific torque

• Geometric optimization of magnetic and pole piece geometry.
• Incremental / iterative design process

• Provides clearer understanding of the role of sub-components.
• Sub-component simulations reduce number of full gear simulations required.
• Mechanical features are fed back to constrain the magnetic geometry 

ModulatedArray Full gear Mechanical design
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Key results from the design of PT-2

1 pole 
pair

Optimal array thickness

Optimal pole piece thickness

Minimum magnetic gap 
thickness

Mechanical design

• Mechanical design features that enable thinner 
magnetic gaps can improve specific torque

Specific torque
• 2D simulation: 61 Nm/kg, roughly 2x PT-1
• Magnetic gap thickness fundamentally limits specific torque

Magnetic configuration
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Prototype Performance
• Fabrication of PT-2 is in progress
• Prototype specific torque is estimated by de-rating prediction by 36 %
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Magnetic (TRL 3)

τ/m = 18.3· τ 0.193

PT-2
(conservative estimate)

PT-1
(measured)

PT-1 PT-2
Torque (Nm)
2D simulation 53.0 178
Measurement 34.0 N/A
Mass (kg)
Active 1.0 (59 %) 1.7 (59 %)
Structural 0.7 (41 %) 1.2 (41 %)
Total 1.7 2.9
Specific torque (Nm/kg)
2D simulation 31 61
Measured 20 >40 (est.)

• Specific torque is expected to be similar to an aircraft gearbox
o Structural mass may increase considerably as thermal, dynamic, 

and other engineering considerations are added
o But, magnetic mass can be reduced by reducing air gap size

o Scaling to other torque levels is unknown at this point

Performance compared to 
aircraft transmissions

Data courtesy of Dr. Tim Krantz (NASA GRC)
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Future Work
• Target NASA’s eVTOL reference aircraft 2

Quadrotor
“Air Taxi” 12:1 ratio

16 kW

battery motor
gearbox

fan

661 rpm

Side-by-Side
“Vanpool”

motor

turboshaft

battery

gearbox

fan

140:1 ratio
93 kW

445 rpm

TBD ratio
73 kW

Tiltwing
“Airliner”

2.6:1 ratio
2415 kW

9.3:1 ratio
535 kW

gearbox gearbox
motorturboshaft

861 rpm

generator

8000 rpm

fan
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Future Work

Phase 2 – enable high efficiency at high speeds
• Data

• Speed dependence of torque, efficiency, vibration, & temperature
• Design

• Reduce driving mechanism for eddy currents
• Unconventional solutions for magnet & pole piece containment

• Materials
• Alternative or laminated magnetic materials
• Electrically-insulating, thermally-conductive structural materials

Phase 3 – integration in electric motors
• Focus: motor-to-rotor stages of the quadrotor and tiltwing
• Explore several topologies from literature
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Conclusions

Key conclusions from NASA’s Phase 1 (understand & improve specific torque)
• Strong coupling between mechanical & magnetic designs

• Magnetic performance limited by mechanical features & min. gap size
• Concentric magnetic gears are viable, at least for lower torque applications (e.g., emerging 

eVTOL aircraft)
• Improvement relies on reducing air gaps, better integration, lighter structures

R&D needs in the field
• Understand scaling
• Thermal management
• Data at higher speeds – efficiency, continuous operation
• Enhanced high-speed efficiency
• Advancement of other configurations

• Shaft angle change • Combining inputs • Higher ratios
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Future Work

Quad Side-by-side Tiltwing
Propulsion
configuration:

Electric
4 rotors
4 EM

Par. Hybrid
2 rotors

2 TS, 1 EM

Turbo elec.
4 rotors
4 EM

Gear stage EM-rotor TS-rotor EM-rotor
Ratio 12.1 Up to 140 9.3
Load (kW) 15.9 92.6 535

(rpm) 661 445 861
(Nm) 229 1987 5928

Gear stage N/A EM-rotor GB Genset
Ratio TBD 2.6
Load (kW) 73.2 2415

(rpm) 445 8000
(Nm) 1,569 2,883
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Emerging Aeronautics Markets
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Magnetically-Geared Motors

Wind industry, mass 
optimized motors

Helicopter 
gearboxes

Aero “super” mass-
optimized motors

~30x

~7x
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Magnetically-Geared Motors

Motor

Gearbox

Total

Direct-drive (Super mass optimized)

60% mass reduction
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Prototypes – Mechanical Configuration
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Test Rig

Test gearMotor Dynamometer
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