

Magnetic Gearing Research at NASA

Vivake	Justin	Thomas
Asnani	Scheidler	Tallerico

NASA Glenn Research Center Materials and Structures Division Rotating and Drive Systems Branch

AHS International 74th Annual Forum Phoenix, AZ May 17, 2018

www.nasa.gov

Outline

- Motivation
- Principles of operation
- Technology development at NASA
- Future work
- Conclusions

Growth of short haul market & emergence of urban air mobility market

- Enabled by electrified propulsion systems
- Prevalence of smaller (lower torque)
 propulsors
- Most concepts use direct drive
- Geared drives are almost always mass optimal

Geared drive

- + Optimized motor & fan
- More complex
- Potentially less reliable

National Aeronautics and Space Administration

Motivation

Mechanical gearing

Pros

- + High / very high torque/mass
 (specific torque)
- + High / very high efficiency
- + Mature technology

Cons

- Contact-related wear & failure
 - Requires lubrication system(s)
 - Routine & costly maintenance
- Strong tonal vibration & cabin noise

Magnetic gearing

Pros

- + Non-contact
 - + No lubrication
 - + Low maintenance
- Easily integrated in electric machines
- + Potentially low vibration

Cons

- Unknown limits on specific torque & efficiency
- Magnet temperature limit
- Individual magnet interaction weaker than 1 gear tooth pair

Background

Key historical developments

- **1901** 1st invention
- <1960s primarily electromagnets
- 1966 SmCo magnets invented
- **1983** NdFeB magnets invented
- 2001 Concentric magnetic gear (CMG) mathematics

Why we selected CMG

- High specific torque
- Potential replacement of final stage helicopter gearing (cabin noise reduction)
- Easily integrated in electric machines

Principles of Operation

• Example: 4:1 gear ratio, 24 pole pairs in ring (15° wavelength), 6 magnets per pair

Principles of Operation

• Example: 4:1 gear ratio, 24 pole pairs in ring (15° wavelength), 6 magnets per pair

Spatial harmonic order

Principles of Operation

• Key design variables

- # of magnetic pole pairs ("teeth")
- # magnets
- Radial thickness of components & air gaps

Technology Development at NASA

2-1/2 year project

- Create fundamental understanding
- Compare to mechanical gearing for aerospace applications

Focus areas

- Phase 1 specific torque
- Phase 2 efficient high-speed operation
- Phase 3 motor/gear integration

Progress

- Phase 1 was recently completed.
- Two prototypes were developed to understand specific torque

Design and manufacture of Prototype 1 (PT-1)

- Goal: To gain design & manufacturing experience
- Electric aircraft propeller specifications: 152 mm (6 in), ~4:1 speed reduction, 4500 rpm
- <u>Static/2D magnetic FEA</u>: Off-the-shelf magnets / Limited design optimization
- Printed structures
 - Rapid production
 - Nylon-carbon fiber composite material
 - Not suitable for heat dissipation in long-duration tests

Results from PT-1

Specific torque

- 2D simulation: 31 Nm/kg
- Measurement: 20 Nm/kg
- 36 % reduction

<u>Lesson</u>

 Magnetic forces can deform/damage the structures during assembly

Successful assembly procedure

- Fully construct the sun, modulator, and ring → full hoop stiffnesses
- Use shims in air gaps to keep members centered → reduces magnetic forces

Demonstration of gear ratio

National Aeronautics and Space Administration

Design of Prototype 2

- Goal: Maximize specific torque
 - Geometric optimization of magnetic and pole piece geometry.
- Incremental / iterative design process
 - Provides clearer understanding of the role of sub-components.
 - Sub-component simulations reduce number of full gear simulations required.
 - Mechanical features are fed back to constrain the magnetic geometry

Key results from the design of PT-2

Specific torque

- <u>2D simulation</u>: 61 Nm/kg, roughly 2x PT-1
- Magnetic gap thickness fundamentally limits specific torque

• Mechanical design features that enable thinner magnetic gaps can improve specific torque

Magnetic configuration

Prototype Performance

- Fabrication of PT-2 is in progress
- Prototype specific torque is estimated by de-rating prediction by 36 %

	PT-1	PT-2	•
<u>Torque (Nm)</u>			-
2D simulation	53.0	178	
Measurement	34.0	N/A	
<u>Mass (kg)</u>			-
Active	1.0 (59 %)	1.7 (59 %)	
Structural	0.7 (41 %)	1.2 (41 %)	
Total	1.7	2.9	
Specific torque (Nm/kg)			
2D simulation	31	61	
Measured	20	>40 (est.)	

• Specific torque is expected to be similar to an aircraft gearbox

- Structural mass may increase considerably as thermal, dynamic, and other engineering considerations are added
- But, magnetic mass can be reduced by reducing air gap size
- Scaling to other torque levels is unknown at this point

Data courtesy of Dr. Tim Krantz (NASA GRC)

Future Work

Target NASA's eVTOL reference aircraft²

Future Work

Phase 2 – enable high efficiency at high speeds

- Data
 - Speed dependence of torque, efficiency, vibration, & temperature
- Design
 - Reduce driving mechanism for eddy currents
 - Unconventional solutions for magnet & pole piece containment
- Materials
 - Alternative or laminated magnetic materials
 - Electrically-insulating, thermally-conductive structural materials

Phase 3 – integration in electric motors

- Focus: motor-to-rotor stages of the quadrotor and tiltwing
- Explore several topologies from literature

Conclusions

Key conclusions from NASA's Phase 1 (understand & improve specific torque)

- Strong coupling between mechanical & magnetic designs
 - Magnetic performance limited by mechanical features & min. gap size
- Concentric magnetic gears are viable, at least for lower torque applications (e.g., emerging eVTOL aircraft)
- Improvement relies on reducing air gaps, better integration, lighter structures

R&D needs in the field

- Understand scaling
- Thermal management
- Data at higher speeds efficiency, continuous operation
- Enhanced high-speed efficiency
- Advancement of other configurations
 - Shaft angle change
- Combining inputs

• Higher ratios

Acknowledgements

- NASA Revolutionary Vertical Lift Technology (RVLT) Project
- NASA Internal Research & Development Project

References

- Constantinides, S., "The demand for rare Earth materials in permanent magnets," Proc. of 51st Conf. of Metallurgists, Niagra Falls, Canada, 2012.
- Johnson, W., Silva, C., and Solis, E., "Concept Vehicles for VTOL Air Taxi Operations," American Helicopter Society Technical Conference on Aeromechanics Design for Transformative Vertical Flight, San Francisco, CA, Jan 16 – 19, 2018.

Future Work

		Quad	Side-by-side	Tiltwing
Propuls	sion	Electric	Par. Hybrid	Turbo elec.
configu	iration:	4 rotors	2 rotors	4 rotors
		4 EM	2 TS, 1 EM	4 EM
Gear st	age	EM-rotor	TS-rotor	EM-rotor
Ratio		12.1	Up to 140	9.3
Load	(kW)	15.9	92.6	535
	(rpm)	661	445	861
	(Nm)	229	1987	5928
Gear st	age	N/A	EM-rotor GB	Genset
Ratio			TBD	2.6
Load	(kW)		73.2	2415
	(rpm)		445	8000
	(Nm)		1,569	2,883

Emerging Aeronautics Markets

Magnetically-Geared Motors

Magnetically-Geared Motors

Prototypes – Mechanical Configuration

Test Rig

