Two-Speed Rotorcraft Research Transmission Power-Loss Associated with the Lubrication and Hydraulic Rotating Feed-Through Design Feature

Mark A. Stevens
Mechanical Engineer
NASA Glenn Research Center

Mark J. Valco
Research Aerospace Engineer
Army Research Laboratory

Kelsen E. LaBerge
Mechanical Engineer
Army Research Laboratory

Collocated in Brook Park, Ohio 44135 USA

Presented at the AHS International 74th Annual Forum & Technology Display, May 14-17, 2018, Phoenix, Arizona, USA.
This is a work of the U.S. Government and is not subject to copyright protection in the U.S.
Topics

• Background – why are we doing this?

• Modular inline concentric two-speed research transmission configuration

• Rotating Feed-Through (RFT) design feature
 • RFT System (Shaft and RFT) in the two-speed transmission
 • Isolated RFT power loss experiment and results
 • Conclusions and future RFT development
Background

• Advances in rotorcraft propulsion systems require increased efficiency, power, and enhanced capabilities

• Studies show that variable/multi-speed rotors are required for:
 • Enhanced capabilities: increased speed, payload, and range
 • Reduction in noise

Advances require varying rotor speed up to 50%.

Present Limitations ~15% via engine output shaft speed control.
Future Rotorcraft Propulsion System Configuration, Variable/Multi-Speed Gearbox Application

To Mid-Wing Gearbox

V/M-S Gearboxes

Gas Turbine Engines

Combiner Gearbox

Tilt-Axis Gearbox

Reduction Gearbox

Hover Ratio 131.4 : 1 Cruise Flight Ratio 243.6 : 1
Two-Speed Research Transmission Design Requirements

- 250 HP nominal (200 HP facility capacity)
- Inline concentric configuration
- Input Speed 15,000 rpm
- Output Speeds 15,000 rpm (hover), 7,500 rpm (cruise)
- Lubricant: DOD-PRF-85734A, synthetic ester-based oil
- Drive should fail safe to the high-speed (hover) mode
- Employ straight spur gear geometry
- a Provide high-speed positive drive locking-element
- a Light-weight rotating components (flight like)
- b Housing design (modular, possibility of windage shrouds)

\[a \text{ requirement dropped}\]
\[b \text{ not an original requirement}\]
Research Transmission Modules: Gear & Clutch

1:1 Direct Drive (Hover Mode)
- Control Clutch Engaged

2:1 Reduction Drive (Cruise Mode)
- Control Clutch Disengaged
Gear Module 1: Offset-Compound Gear (OCG)

Input Gear

Ring Gear

Input Gear

Ring Gear

Ratio 2:1

Ratio 1:1

OCG Cluster Offset Axis

Cluster Gear (OCG)
Gear Module 2: Dual Star-Idler Planetary (DSI)

Star Gear
Reversing Idler Gear
Sun Gear
Ring Gear
Carrier (Fixed)

Ratio 2:1
Ratio 1:1
Clutch Module: Dry-Clutch (DC)

- Dry-Clutch
- Drive Diaphragm Spring
- Intermediate Shaft
- Sprag Clutch
 - 16 sprag elements
 - 4-lube inlets/drains
- Low-Speed Shaft
- Ratio=2:1
- Ratio=1:1
- Clutch Hub
 - * Release Bearing Ass’y
 - * Rotating Feed-Through
- Output Shaft (DC)

* Unique hardware necessary to meet the inline design requirement
Clutch Module: Wet-Clutch (WC)

- Wet-Clutch
- Low-Speed Shaft
- Drive Helical Springs
- Sprag Clutch
- Drive Plates
- * Annular Release Piston
- * Rotating Feed-Through
- * Output Shaft (WC)

Ratio=2:1

Ratio=1:1

* Unique hardware necessary to meet the inline design requirement
Rotating Feed-Through (RFT) Design Feature

Output Shaft and RFT in the Two-Speed Transmission
Power Loss Experimental Setup
Power Loss Experimental Results
Output Shaft* - Hydraulic & Lubrication Passages
(Wet-Clutch Shown)

Passage C
Bearing Oil Jets
Drive Plates & Oil Jets

Passage B
Release Piston

Passage A
Sprag Clutch At Inner Race

Drains
Orifice (Bleed)
Low-Speed Shaft

A B C
RFT Inlets: Lube / Clutch / Lube

* Unique hardware necessary to meet the inline design requirement
Hydraulic/Lubricant Rotating Feed-Through (RFT*)

- Ring Seals
- 15,000 rpm Max

* Unique hardware necessary to meet the inline design requirement
RFT Example Single Passage Pressures, Speeds, Velocities

- **O-ring, Viton (Static)**
- **Ring Seal, Polyimide (Dynamic)**
- **Clearance**

Pressures & Reactions

- $P_1 \rightleftharpoons P_1$
- $P_0 \rightleftharpoons P_0$
- $P_C \rightleftharpoons P_1$
- $P_C \rightleftharpoons P_1$

Axis of Rotation

- **P1 – RFT Passage Pressure**
- **P0 – Atmospheric Pressure - or - Adjacent Passage Pressure**

Stator

- 0 rpm

Rotor

- 15,000 rpm Maximum Shaft Speed
- 1,571 in/s (40 m/s) Ring Seal Side Surface Velocity

(Ref: 2 inch nominal diameter)

Output Shaft Not Shown
RFT Seal Pressure and Speed Operating Points

Field Survey of Automatic Transmission Ring Seal P-V Conditions

P = Contact Pressure MPa

V = Tangential Sliding Speed (m/s)

RTF Ring Seal Conditions at Cruise and Hover:
- Dry-Clutch control (initial* & modified** design)
- Wet-Clutch control (0-200 psi)

Ref. 9: Graphic Basis (0 - 20 m/s); RFT operation (20 - 40 m/s)
RFT Isolated Power Loss Experiments

- Blank Flange
- Output Shaft
- Duplex Bearing
- Oil In, Passages A, B, & C
- Passage A Sprag Orifice
- Passages B & C Orifice or Plug (To Simulate Each Clutch)
- TorqDisc* & Drive Motor

Notes:
* - Torque Is Measured
- Power Is Calculated
- Bearing Tare is Measured
- Test Speed < 8,000 rpm
RFT Experiment Ring Seal Torque Drag Vs. Speed

Dry Clutch Configuration
Clutch disengaged at 2.59 MPa (375 psi)
Clutch engaged at 0 MPa (0 psi)

Experimental data linear trend line correlation coefficients, r^2

<table>
<thead>
<tr>
<th>Clutch Configuration</th>
<th>Engaged r^2</th>
<th>Disengaged r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Clutch</td>
<td>0.0008</td>
<td>0.2</td>
</tr>
<tr>
<td>Wet Clutch</td>
<td>0.9</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note: Torques shown above is for the RFT ring seal drag less the duplex bearing torque measured separately.

Note: Speed range limited due to rotor dynamic response of experiment setup.
RFT Power Loss Trend Line Equations

Dry-Clutch disengaged (cruise)
| 80 psi (sprag) | 375 psi (clutch) | 375 psi (clutch) |
Torque (in-lb) = 1.4E-4 × Ω + 20
Power (hp) = 2.4E-9 × Ω² + 3.2E-4 × Ω
Torque (N-m) = 1.6E-5 × Ω + 2.3
Power (Watts) = 1.7E-6 × Ω² + 2.4E-1 × Ω

Dry-Clutch engaged (hover)
| 80 psi (sprag) | 0 psi (clutch) | 0 psi (clutch) |
Torque (in-lb) = 1.2E-5 × Ω + 6.5
Power (hp) = 1.9E-10 × Ω² + 1.0E-4 × Ω
Torque (N-m) = 1.4E-6 × Ω + 0.73
Power (Watts) = 1.4E-7 × Ω² + 7.7E-2 × Ω

Wet-Clutch disengaged (cruise)
| 80 psi (sprag) | 200 psi (clutch) | 80 psi (bearing lube) |
Torque (in-lb) = 2.4E-04 × Ω + 14
Power (hp) = 3.9E-09 × Ω² + 2.2E-04 × Ω
Torque (N-m) = 2.8E-05 × Ω + 1.5
Power (Watts) = 2.9E-06 × Ω² + 0.16 × Ω

Wet-Clutch engaged (hover)
| 80 psi (sprag) | 0 psi (clutch) | 80 psi (bearing lube) |
Torque (in-lb) = 4.7E-04 × Ω + 4.1
Power (hp) = 7.4E-09 × Ω² + 6.5E-05 × Ω
Torque (N-m) = 5.3E-05 × Ω + 0.46
Power (Watts) = 5.5E-06 × Ω² + 4.9E-02 × Ω

Where Ω is shaft speed in rpm

Note: RFT torque and power loss shown above is less duplex bearing torque and power loss.
Generalized Ring Seal Power Loss Equations

Torque (in-lb) = \((5.8 \times 10^{-7} \times \Omega + 2.8 \times 10^{-2}) \times \Delta P \)
Power (hp) = \((9.2 \times 10^{-12} \times \Omega^2 + 4.5 \times 10^{-7} \times \Omega) \times \Delta P \)
where: \(\Omega \) is rpm and \(\Delta P \) is psi

Torque (N-m) = \((6.6 \times 10^{-8} \times \Omega + 3.2 \times 10^{-3}) \times \Delta P \)
Power (W) = \((6.9 \times 10^{-9} \times \Omega^2 + 3.4 \times 10^{-4} \times \Omega) \times \Delta P \)
where: \(\Omega \) is rpm and \(\Delta P \) is MPa

Comparison of Power Loss from Experimental Data Trend Line Equations with Power Loss Estimates from the Generalized Ring Seal Power Loss Equation

<table>
<thead>
<tr>
<th>Clutch Drive Ratio</th>
<th>RFT Passage Pressure</th>
<th>Summed Seal ΔP Pressure Differentials (psi)</th>
<th>% Error 1,000 rpm</th>
<th>% Error 7,500 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Clutch 1:1</td>
<td>A (psi) 80</td>
<td>B (psi) 0</td>
<td>C (psi) 0</td>
<td>160</td>
</tr>
<tr>
<td>Dry Clutch 2:1</td>
<td>A (psi) 80</td>
<td>B (psi) 375</td>
<td>C (psi) 375</td>
<td>750</td>
</tr>
<tr>
<td>Wet Clutch 1:1</td>
<td>A (psi) 80</td>
<td>B (psi) 0</td>
<td>C (psi) 80</td>
<td>320</td>
</tr>
<tr>
<td>Wet Clutch 2:1</td>
<td>A (psi) 80</td>
<td>B (psi) 200</td>
<td>C (psi) 80</td>
<td>400</td>
</tr>
</tbody>
</table>
Estimating RFT Power Loss

Comparison of Experimental RFT Power Loss Data Linear Trend Lines versus the Generalized Ring Seal Power Loss Equation

Dry Clutch Configuration

| 80 psi (sprag) | Clutch psi | Clutch psi |

Wet Clutch Configuration

| 80 psi (sprag) | Clutch psi | 80 psi |

![Graphs showing comparison of power loss data for dry and wet clutch configurations.](image-url)
RFT Conclusions & Future Considerations

Conclusions

• The RFT power loss at ~80 psid is low and is a reasonable option to provide lubrication internal to a rotating system provided that seals are not required to be leak free.

• The RFT power loss does not scale with system power, but does increase when designs require larger shaft diameters, higher speeds, or higher pressure.

• The RFT and total transmission power loss can be minimized by designing any components supplied through the RFT with the lowest required pressures necessary for proper function.

• The polyimide ring seals performed well for the experimental time accumulated.

• All experimental data and results are valid only for polyimide ring seal materials.

Future Considerations

• Test all ring seal materials under consideration as friction coefficients vary considerably.

• The RFT design used standard ring seals and installation geometry. Future design should consider thermal expansion with respect to operating temperatures.

• The RFT rotor geometry should be optimized:
 Outside diameter: Increase seal sliding contact area.
 Groove width: Increased width ensures pressure is applied radially outward.
Questions?