

Design Space Exploration of Pericyclic Transmission with Counterbalance and Bearing Load Analysis

Zachary A. Cameron

Research Engineer, NASA GRC

Dr. Edward C. Smith

Professor, Penn State

Dr. Hans DeSmidt

Professor, U Tennessee

Dr. Robert C. Bill

Research Associate, Penn State

Prepared for AHS Forum 74, May 2018 Phoenix, AZ

www.nasa.gov

Motivation

- Rotorcraft transmission require multiple gear stages to decrease turbine speed to rotor speed
- Pericyclic transmission can replace multiple gear stages through its ability to achieve high reduction ratios (40:1 or greater)
- Additional benefits shown by Mathur were fewer total components, reduced weight, and decreased noise due to many teeth in contact

Motivation

- Previous work examining dynamics of nutating plate transmission by Anderson showed dynamic moment as a speed limiter to the drive
- Further work by Saribay also made note of this dynamic moment or "overturning moment"
- Neither works explored a method to manage the dynamic moment in high speed operation or reduce resulting bearing loads

Objectives

- Determine design aspects that impact transmission loading
- Gain firm grasp on dynamics of the transmission and magnitudes of moments for operating speeds relative to rotorcraft
- Explore methods to reduce generation of high dynamic loads
- Resolve bearing loads for entire transmission, while utilizing strategies to limit dynamic loads generated

Outline

- 1. Pericyclic Transmission Geometry, Kinematics, and Power Flow
- 2. Pericyclic Dynamics & Methods to Limit Dynamic Loads
- 3. Static Model of Dual Pericyclic Motion Converter Drive
- 4. Conclusions

Pericyclic Transmission Geometry, Kinematics, and Power Flow

Components of Pericyclic Transmission

Four Major Components:

- 1. Input Shaft
- 2. Pericyclic Motion Converter (PMC) Gear
- 3. Reaction Control Member (RCM) Gear
- 4. Output Gear

PMC Gears in Motion

Pericyclic transmission makes use of rotational and nutational motion to achieve high reduction ratios

Gear Pitch Cones

- All pitch cone apexes must be coincident for gears to mesh
- Results in reduction ratio that is independent of nutation angle

$$
\frac{\omega_{in}}{\omega_{out}} = \frac{1}{\left(1 - \frac{N1}{N2} * \frac{N3}{N4}\right)}
$$

Increasing Nutation Angle

- Less conformal pitch cones increase gear loads
- Transmission shortens axially; decreases mass but removes available space for bearings

Increasing Nutation Angle

- Less conformal pitch cones increase gear loads
- Transmission shortens axially; decreases mass but removes available space for bearings
- Increased nutational velocity decreases static input torque and bearing loads

PMC Dynamics & Methods to Limit Dynamic Loads

Dynamic Moment Generated by PMC

• Gyroscopic moment from combination of rotation and nutational velocities acting about x axis (out of page) provides additional PMC bearing load

$$
\frac{D\vec{H}_{PMC}}{Dt}
$$
\n
$$
= \begin{bmatrix}\n-\omega_{in}^{2} * sin(\beta) * [I_{pzz} * (cos(\beta) - (\frac{N1}{N2})) - I_{pyy} * cos(\beta)] \\
0 \\
0\n\end{bmatrix}
$$

PennState

Dynamic Moment Versus 10^8 **Static Moment**

At high input speeds dynamic moment is unreasonable

Centrifugal Force and Resulting Loads

Centrifugal Force and Resulting Loads

Limiting Centrifugal Moment

- Limiting the centrifugal loads developed can be accomplished by making the two sides of the PMC teeth numbers close in value (symmetrical)
- Altering mass of either side to center COG over pitch cone apex center
- Selection of nutation angle where COG crosses from one side of PMC to the other

Eliminating Gyroscopic Moment

Setting Dynamic Moment to Zero

$$
0 = \begin{bmatrix} -\omega_{in}^{2} * sin(\beta) * [I_{pzz} * (cos(\beta) - (\frac{N1}{N2})) - I_{pyy} * cos(\beta)] \\ 0 \\ 0 \end{bmatrix}
$$

\n**Requirements**
\n $(R_0^2 + R_i^2) \gg L^2$
\n $cos(\beta) \ge \frac{1}{2}$
\n $\frac{N1}{N2} \le \frac{1}{2}$
\n**о**
\n 11
\n 30
\n 12
\n 75
\n $\frac{N1}{N2} \le \frac{1}{2}$
\n 14
\n 32
\n 32
\n 32
\n 34
\n 32
\n 34
\n 34
\n 30
\n 32
\n 34
\n 32
\n 34
\n 35
\n 36
\n 37
\n 38
\n 30
\n 32
\n 34
\n 35
\n 36
\n 37
\n 38
\n 39
\n 30
\n 30
\n 31
\n 32
\n 34
\n 35
\n 36
\n 37
\n 38
\n 39
\n 30
\n 31
\n 32
\n 33
\n 34
\n 35
\n 36
\n 37
\n 38
\n 39
\n 30
\n 30
\n 30
\n

Eliminating Gyroscopic Moment

Static Model of Dual Pericyclic Motion Converter Drive

Static Model of Dual PMC Pericyclic Transmission

- Dual pericyclic mirrors components
- Splits power between two PMCs
- Each PMC has counterbalance
- PMCs designed to place COG at center

Dual PMC Model

Conclusions

Conclusions

- Tradeoff with increased nutation angle is decreased PMC bearing static loads for increased gear tooth loads
- Intelligent PMC design can effectively negate the PMC centrifugal loads
- The high gyroscopic moment, given **certain tooth numbers and nutation angles,** can be counterbalanced, in the case sown for as little as 60% additional mass to the PMC
- Static model of dual pericyclic developed to find loads across entire transmission and showed drop of radial loads of three orders of magnitude in the PMC bearings when counterbalanced

Questions

