

MCRadar: A Monte Carlo Solver for Cloud and Precipitation Radar

Ian Stuart Adams

NASA Goddard Space Flight Center

with contributions from Joe Munchak and Kwo-Sen Kuo

Multiple Scattering in Radar

- Anomalous scattering contribution
 - o High optical deptho High albedo
- Enhanced reflectivity down-range
 - Pulse stretching
- Overestimated by parallel-plane models

9/6/17

Multiple Scattering Example: Convection

TOGA COARE GCE Profile

Simulated Ka-band Reflectivity Factor

Draw RN to determine propagation path length

 Completely random orientations

$$e^{kl} = RN$$
$$e^{k_1 l_1} e^{k_2 l_2} \dots e^{k_n l_n}$$

Azimuthally-random orientations (solved numerically)

$$e^{k_I l} + \frac{Q}{l} e^{k_Q l} = RN$$

- Draw RN to determine scattering or absorption
 - If RN > albedo, terminate (absorption), throw new photon
 - Else, add contribution to reflectivity based on distance
 - Randomly select new distance
 - Continue propagation until absorption

TRMM Example

19 October 2008 0129Z

Adams and Bettenhausen (2016)

Measured and Simulated PR Reflectivity

Multiple Scattering Effects

Multiple Scattering Effects (Contrived K_a band)

OLYMPEX 03 Dec 2015

10000

Observed W-band dBZ

20

OLYMPEX/RADEX Case Study: 05 Dec 2015

Open ARTS Community Workshop 2017

Interesting LDR Features Above Melting Layer

Open ARTS Community Workshop 2017

Application of Idealized Profile

- Planar approximation
 - Based on Adams and Bettenhausen (2012)
 - o **ar = 7**
 - Flutter σ = 38^o
- Gamma distribution
 - Field et al (2005)
 temperature
 dependence

$$(N_{0,23}^* = M_2^4 / M_3^3)$$

Reflectivity Profiles

Linear Depolarization Ratio

Conclusions and Future Work

- Monte Carlo integration to include multiple scattering
- Requires finite antenna response (Gaussian)
- Allows for polarimetric variables (LDR, ZDR)

 K_{dp}, ρ_{hv} in development
- Available in development version of ARTS